SPECTROSCOPIC PROPERTIES OF A SYMMETRICAL SCHIFF BASE
489
500
450
400
350
300
250
200
150
100
50
500
Zn
450
400
350
300
250
200
150
100
50
Ligand
Ni
Co
Cu
0
0
Zn(II)
Ligand
Ni(II)
Co(II)
Cu(II)
485
500
515
530
545
560
575
complex
complex complex complex
wavelength (nm)
FIG. 5. Emission spectra of the ligand and its complexes at room temperature (ligand concentration: 5×10−5 M, complex concentration: 5×10−5 M, λex : 460
nm). (Figure is provided in color online.)
Figure 5 shows the fluorescence spectra of the ligand 3 and ferent solvents with increasing dipol moments and decreasing
its Co (II), Cu (II), Ni (II), and Zn (II) complexes in DMF viscosities of the solvents in fluorometric experiments.
solutions. In comparison with the corresponding free ligand 3
(λem = 476 nm), Zn (II) complex exhibits blue-shift with λem
=
503 nm and shows a significant increase in fluorescence inten-
sity at 503 nm. This anomaly can be explained by the fact that
excited states resulting from complexes of Zn (II) are typically
ligand-centered in nature owing to the inability of the d10 metal
center to participate in low-energy charge transfer for metal-
centered transitions.[26–29] So, factors like an increased rigidity
in complex structure,[29] a restriction in the photoinduced elec-
tron transfer (PET),[22,27] etc. are assigned to the increase in the
fluorescence intensity.[25] A decrease of the fluorescence inten-
sity is observed for the complexes for Cu (II), Co (II), and Ni (II)
ions. A decrease of the fluorescence intensity caused by Cu (II),
Co (II), and Ni (II) ions is probably a result of the “heavy atom
effect” causing the increase of intersystem crossing rate con-
stant, ligand-to-ions electronic energy transfer, redox-activity,
and magnetic perturbation.[25,30–32]
REFERENCES
1. Roy, P.; Dhara, K.; Manassero, M.; Banerjee, P. Inorg. Chem. Commun.
2008, 11, 265.
2. Chakraborty, J.; Nandi, M.; Mayer-Figge, H.; Sheldrick, W.S.; Sorace, L.;
Bhaumik, A.; Banerjee, P. Eur. J. Inorg. Chem. 2007, 32, 5033.
3. Erxleben, A.; Hermann, J. J. Chem. Soc. Dalton Trans. 2000, 4, 569.
4. Biswas, P.; Ghosh, M.; Dutta, S.K.; Flo¨rke, U.; Nag. K. Inorg. Chem. 2006,
45, 4830.
5. Ghiladi, M.; Larsen, F.B.; McKenzie, C.J.; Søtofte, I.; Tuchagues, J.P. J.
Chem. Soc. Dalton Trans. 2005, 9, 1687.
6. Yu, T.; Su, W.; Li, W.; Hong, Z.; Hua, R.; Li, M.; Chu, B.; Li, B.; Zhang,
Z.; Hu, Z.Z. Inorg. Chim. Acta. 2006, 359, 2246.
7. Roy, P.; Manassero, M.; Dhara, K.; Banerjee, P. Polyhedron. 2009, 28, 1133.
˙
8. Yilmaz, I. Transit. Met. Chem. 2008, 33, 259.
9. Levenson, G.W. Physiol Behave. 2005, 86, 399.
10. Scott, L.E.; Orvig, C. Chem. Rev. 2009, 109, 4885.
11. Galdes, A.; Vallee, B.L.; Sigel, H. (Eds.). Metal Ions in Biological Systems;
Marcel Dekker: New York, 1983.
12. a) Frausto da Silva, J.J. R.; Williams, R.J. P. The Biological Chemistry of
the Elements; Clarendon Press: Oxford, 1991. b) Lippard, S. -J.; Berg, J.
M. Principles of Bioinorganic Chemistry; University Science Books: Mill
Valley, 1994.
CONCLUSIONS
As a result, the potential binucleating tetradentate Schiff base
bissalophen 3 was prepared and employed to synthesize binu-
clear transition metal complexes with Cu (II), Ni (II), Zn (II),
and Co (II). Furthermore, absorption and fluorescence proper-
ties of tetradentate Schiff base ligand 3 and its transition metal
complex were described. Comparing the fluorescent intensity of
ligand 3 and the transition metal complexes, it can be seen that
Zn (II) complex is higher, and this result is provided specifically
for Zn (II) complex in the fluorometric metal determination.
Moreover, it was observed that the emission intensity of ligand
3 and its transition metal complexes usually increased in dif-
¨
13. Bas¸og˘lu, A.; Parlayan, S.; Ocak, M.; Alp, H.; Kantekin, H.; Ozdemir, M.;
¨
Ocak, U. Polyhedron 2009, 28, 1115.
14. Roy, P.; Dhara, K.; Manassero, M.; Banerjee, P. Inorg. Chim. Acta 2009,
362, 2927.
15. Yu, T.; Zhang, K.; Zhao, Y.; Yang, C.; Zhang, H.; Qian, L.; Fan, D.; Dong,
W.; Chen, L.; Qiu, Y. Inorg. Chim. Acta 2008, 361, 233.
˙
¨
16. C¸ ukurovalı, A.; Yilmaz, I.; Ozmen, H.; Ahmedzade, M. Transit. Met. Chem.
2002, 27, 171.
17. Canpolat, E.; Yazici, A.; Kaya, M. J. Coord. Chem. 2007, 60, 473.
˙
˙
18. Demir, I.; Bayrakcı, M.; Mutlu, K.; Pekacar, A.I. Acta Chim. Slov. 2008,
55, 120.
19. Raman, N.; Raja, S.J.; Sakthivel, A. J. Coord. Chem. 2009, 62, 691.