[()TD$FIG]
262
S.-T. Ha et al. / Chinese Chemical Letters 22 (2011) 260–263
Fig. 2. Plot of phase transition temperatures against number of carbon atoms (n) in alkanoyloxy chain during heating scan.
A plot of phase transition temperatures against number of carbon atoms (n) in alkanoyloxy chain during heating
scan is shown in Fig. 2. Based on the plot, it can be deduced that length of terminal alkanoyloxy chain influenced the
mesomorphic properties. With the increasing length of terminal chain, the phase changed from non-mesogenic to
enantiotropic smectic A phase. The molecule of n-butanoyloxy derivative is too rigid for it to be mesogenic [14]. As
from n-hexanoyloxy to n-tetradecanoyloxy derivatives, the homologous members showed enantiotropic smectic A
phase. From the graph, it is apparent that range of smectic A phase increased from n-hexanoyloxy to n-decanoyloxy
members. This is because the increase of length of terminal alkanoylxy chain led to the enhancement of the smectic
properties. However, the range of smectic A phase of n-dodecanoyloxy and n-tetradecanoyloxy decreased due to the
dilution of mesogenic core [16,17].
Acknowledgment
The author (S.T. Ha) would like to thank Universiti Tunku Abdul Rahman for the research facilities and
financial support. T.L. Lee would like to acknowledge Ministry of Higher Education for the award of MOHE
Scholarship.
References
[1] O. Lehmann, Zeitschrift fu¨r Physikalische Chemie 4 (1889) 462.
[2] F. Reinitzer, Monatshefte fu¨r Chemie (Wien) 9 (1888) 421.
[3] P.J. Collings, M. Hird, Introduction to Liquid Crystals: Chemistry and Physics, Taylor & Francis Ltd., UK, 1998.
[4] A. Jacobi, W. Weissflog, Liq. Cryst 22 (1997) 107.
[5] H. Kelker, B. Scheurle, Angew. Chem. Int. Edn 81 (1969) 903.
[6] (a) G.N. Taylor, F.J. Kahn, J. Appl. Phys 45 (1974) 4330;
(b) M.R. Huang, X.G. Li, G. Lin, Sep. Sci. Technol 30 (1995) 449;
(c) X.G. Li, M.R. Huang, L. Hu, G. Lin, P.C. Yang, Eur. Polym. J 35 (1999) 157;
(d) M.L.N.M. Mohan, B.V.S. Goud, P.A. Kumar, V.G.K.M. Pisipati, Mater. Res. Bull 34 (1999) 2167;
(e) D.L. de Murillas, R. Pinol, M.B. Ros, J.L. Serrano, T. Sierra, M.R. de la Fuente, J. Mater. Chem 14 (2004) 1117.
[7] G.Y. Yeap, S.T. Ha, P.L. Lim, et al. Mol. Cryst. Liq. Cryst 423 (2004) 73.
[8] G.Y. Yeap, S.T. Ha, P.L. Lim, et al. Mol. Cryst. Liq. Cryst 452 (2006) 63.
[9] G.Y. Yeap, S.T. Ha, P.L. Boey, et al. Mol. Cryst. Liq. Cryst 452 (2006) 73.
[10] G.Y. Yeap, S.T. Ha, P.L. Lim, et al. Liq. Cryst. 33 (2006) 205.
[11] A.A. Jarrahpour, M. Zarei, Molbank (2004) M352.
[12] S.T. Ha, L.K. Ong, Y.F. Win, T.M. Koh, G.Y. Yeap, Molbank 3 (2008) M582.
[13] Analytical and spectroscopic data for the representative compound 12ABIA: Yield 63%, EI-MS m/z (rel. int. %): 505 (11) [M+], 323 (100), IR
(max (KBr, cm(1): 2920, 2850 (C-H aliphatic); 1751 (C=O ester); 1600 (C=N), 1H NMR (300 MHz, CDCl3): d 0.88 (t, 3H, J=6.6 Hz, CH3-),
1.30 (m, 16H, CH3-(CH2)8-), 1.76 (qt, 2H, J=7.4 Hz, -CH2-CH2-COO-), 2.57 (t, 2H, J=7.5 Hz, -CH2-COO-), 6.95 (d, 2H, J = 8.7 Hz, Ar-H),
7.20 (d, J = 8.4 Hz, 2H, Ar-H), 7.69 (d, J=8.7 Hz, 2H, Ar-H), 7.90 (d, J = 8.4 Hz, 2H, Ar-H), 8.39 (s, 1H, -CH = N-), 13C NMR (100 MHz,
CDCl3): d 14.11 (CH3-), 22.68 (CH3CH2-), 24.89 (CH3CH2CH2-), 29.10, 29.25, 29.33, 29.45, 29.60 for methylene carbons (CH3CH2CH2-