in the past 40 years in part due to a lack of efficient synthetic
access to these cycloaddition precursors.10,11 We recently
reported12 that γ-isomerizations of allenamides 1 provide a
facile entry to 1-amido-dienes 3 via a stereoselective 1,3-H
shift (Scheme 1).13 This finding provokes a unique synthetic
design in which the allenamide isomerization could be ren-
dered in tandem with the Oppolzer-type intramolecular
DielsꢀAlder cycloaddition when using N-tethered allena-
mides 4. If successful (4 f 5 f 6), such an endeavor would
allow rapid assembly of structural complexity from simple
allenamides and further underscores the significance of devel-
oping chemistry of allenamides.14ꢀ16 We communicate here
an Oppolzer-type IMDA through γ-isomerizations of
allenamides.
Table 1. Tandem γ-IsomerizationꢀOppolzer-Type IMDA
Scheme 2. Facile Assembly of N-Tethered Allenamides
a All reactions were run in screw-cap vials with Teflon-coated caps.
Concentration = 0.05 M, except for entries 1ꢀ3 and 10 where concen-
tration = 0.02 M. b Isolated yields for 15 or 16. c The only product was
N-tethered 1-amido-diene 13 in 78% yield. d The respective secondary
amide was isolated in 15% yield as a result of hydrolysis along with 26%
of 13. e A complex mixture. f Mostly decomposition of 12.
of starting allenamides. Other amine bases, inorganic bases,
or drying agents screened were not effective (entries 15ꢀ20).
In addition, a p-nosyl substituent on the nitrogen atom
provided higher yield of the respective cycloadduct 16
(entry 14), relative to cycloadduct 15 containing an N-Ts
group (entry 13). Diastereoselectivity or the endo:exo ratio
for 16 (dr = 10:1) was also slightly higher than that of 15
(dr = 8:1). Relative stereochemistry of the major isomer of
While the general plan is laid out concisely in Scheme 2
with allenamides 11 and 1217 readily attainable through
amidative cross-coupling1f,18 of allenyl iodide 7 with re-
spective amides 8 and 9, developing an effective γ-isomer-
ization in conjunction with Oppolzer’s IMDA was not
trivial; a wide range of conditions had to be examined
(Table1). Whilethemodest yieldsattainedunderanumber
of conditions (entries 2ꢀ8) could still be considered useful
given the context of constructing multiple bonds and
stereocenters in a tandem sequence, ultimately it appeared
that a base, optimally being a proton sponge (entry 11) or
Et3N (entry 14), was needed to avoid significant hydrolysis
(11) For some examples of IMDA using systems related to 1-N-
substituted-1,3-dienes over the past 30 years, see: (a) Stork, G.; Morgans,
D. J., Jr. J. Am. Chem. Soc. 1979, 101, 7110. (b) Witiak, D. T.; Tomita, K.;
Patch, R. J.; Enna, S. J. J. Med. Chem. 1981, 24, 788. (c) Keck, G. E.;
Boden, E.; Sonnewald, U. Tetrahedron Lett. 1981, 22, 2615. (d) Martin,
S. F.; Tu, C.; Kimura, M.; Simonsen, S. H. J. Org. Chem. 1982, 47, 3634.
(e) Hwang, G.; Magnus, P. J. Chem. Soc. Chem. Commun. 1983, 693. (f)
Hayakawa, K.; Yasukouchi, T.; Kanematsu, K. Tetrahedron Lett. 1986,
27, 1837. (g) Boeckman, R. K., Jr.; Goldstein, S. W.; Walters, M. A.
J. Am. Chem. Soc. 1988, 110, 8250. (h) Martin, S. F.; Li, W. J. Org. Chem.
1989, 54, 265. (i) Boger, D. L.; Zhang, M. J. Am. Chem. Soc. 1991, 113,
4230. (j) Yamada, H.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1991, 56,
4569. (k) Rawal, V. H.; Iwasa, S. J. Org. Chem. 1994, 59, 2685. (l) Keck,
G. E.; McHardy, S. F.; Murry, J. A. J. Am. Chem. Soc. 1995, 117, 7289.
(m) Lee, M.; Ikeda, I.; Kawabe, T.; Mori, S.; Kanematsu, K. J. Org.
Chem. 1996, 61, 3406. (n) Padwa, A.; Brodney, M. A.; Dimitroff, M.
J. Org. Chem. 1998, 63, 5304. (o) Boonsombat, J.; Zhang, H.; Chughtai,
M. J.; Hartung, J.; Padwa, A. J. Org. Chem. 2008, 73, 3539. (p) Friedrich,
(6) (a) Huang, Y.; Iwama, T.; Rawal, V. H. J. Am. Chem. Soc. 2000,
122, 7843. (b) Kozmin, S. A.; Iwama, T.; Huang, Y.; Rawal, V. H. J. Am.
Chem. Soc. 2002, 124, 4628.
(7) (a) Grauvry, N.; Huet, F. J. Org. Chem. 2001, 66, 583. (b)
Robiette, R.; Cheboub-Benchaba, K.; Peeters, D.; Marchand-Brynaert,
J. J. Org. Chem. 2003, 68, 9809. (c) von Wangelin, A. J.; Neumann, H.;
Go1rdes, D.; Spannenberg, A.; Beller., M. Org. Lett. 2001, 3, 2895.
(8) For examples of tandem benzocyclobutene ring-openingꢀ1-ami-
do-diene DielsꢀAlder sequences, see: Oppolzer, W. J. Am. Chem. Soc.
1971, 93, 3834. (b) Oppolzer, W.; Keller, K. J. Am. Chem. Soc. 1971, 93,
3836. (c) Oppolzer, W.; Robbiani, C. Helv. Chim. Acta 1983, 66, 1119.
(d) For a recent example and for references therein, see: Feltenberger,
J. B.; Hayashi, R.; Tang, Y.; Babiash, E. S. C.; Hsung, R. P. Org. Lett.
2009, 11, 3666.
€
A.; Jainta, M.; Nising, C. F.; Brase, S. Synlett 2008, 589.
(12) Hayashi, R.; Hsung, R. P.; Feltenberger, J. B.; Lohse, A. G. Org.
Lett. 2009, 11, 2125.
(13) For a few notable examples of allenamide isomerizations, see: (a)
Overman, L. E.; Clizbe, L. A.; Freerks, R. L.; Marlowe, C. K.J. Am. Chem.
Soc. 1981, 103, 2807. Also see: (b) Farmer, M. L.; Billups, W. E.; Greenlee,
R. B.; Kurtz, A. N. J. Org. Chem. 1966, 31, 2885. (c) Kinderman, S. S.; van
Maarseveen, J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T.
Org. Lett. 2001, 3, 2045. (d) Trost, B. M.; Stiles, D. T. Org. Lett. 2005, 7,
2117.
€
(9) (a) Oppolzer, W.; Frostl, W. Helv. Chim. Acta 1975, 58, 590. (b)
Oppolzer, W.; Flaskamp, E.; Bieber, L. W. Helv. Chim. Acta 2001, 84,
141.
(10) For recent reviews for intramolecular DielsꢀAlder reactions for
natural product synthesis, see: (a) Takao, K.; Munakata, R.; Tadano, K.
Chem. Rev. 2005, 105, 4779. (b) Padwa, A.; Bur, S. K. Tetrahedron 2007,
63, 5341.
(14) For a leading review on allenamide chemistry, see: Hsung, R. P.;
Wei, L.-L.; Xiong, H. Acc. Chem. Res. 2003, 36, 773.
Org. Lett., Vol. 13, No. 12, 2011
3115