3 K. A. Mauritz and R. B. Moore, Chem. Rev., 2004, 104,
4535–4585.
4 L. Carrette, K. A. Friedrich and U. Stimming, ChemPhysChem,
2000, 1, 162–193.
5 K. D. Kreuer, Chem. Mater., 1996, 8, 610–641.
6 J. C. Persson and P. Jannasch, Chem. Mater., 2006, 18, 3096–3102.
7 J. C. Persson and P. Jannasch, Chem. Mater., 2003, 15, 3044–3045.
8 Z. Zhou, S. W. Li, Y. L. Zhang, M. L. Liu and W. Li, J. Am.
Chem. Soc., 2005, 127, 10824–10825.
9 R. C. Woudenberg, O. Yavuzeetin, M. T. Tuominen and
E. B. Coughlin, Solid State Ionics, 2007, 178, 1135–1141.
10 Y. B. Chen, M. Thorn, S. Christensen, C. Versek, A. Poe,
R. C. Hayward, M. T. Tuominen and S. Thayumanavan, Nat.
Chem., 2010, 2, 503–508.
11 M. Iannuzzi, J. Chem. Phys., 2006, 124, 204710.
12 S. Scheiner and M. Y. Yi, J. Phys. Chem., 1996, 100, 9235–9241.
13 H. Hen, T. Y. Yan and G. A. Voth, J. Phys. Chem. A, 2009, 113,
4507–4517.
14 B. S. Hickman, M. Mascal, J. J. Titman and I. G. Wood, J. Am.
Chem. Soc., 1999, 121, 11486–11490.
15 M. Yoshio, T. Mukai, H. Ohno and T. Kato, J. Am. Chem. Soc.,
2004, 126, 994–995.
16 T. Kato, N. Mizoshita and K. Kishimoto, Angew. Chem., Int. Ed.,
2006, 45, 38–68.
Fig. 4 Comparison of temperature dependent proton conductivity of
molecules 9a, 9b and 9c. Molecule 9c shows a slope change around
68 1C indicating a change in the activation energy. This temperature
also corresponds to a crystalline–LC phase transition. Molecules 9a
and 9b show continuous increase in conductivity with temperature.
We have shown that the LC phase can lower the activation
energy barrier for proton conduction. We believe that LC
materials are viable platforms for creating next generation
PEMs. Further studies to attach different proton transporting
functional groups and compare their proton conductivities are
currently under investigation.
17 C. F. Chow, V. A. L. Roy, Z. Ye, M. H. W. Lam, C. S. Lee and
K. C. Lau, J. Mater. Chem., 2010, 20, 6245–6249.
18 J. Motoyanagi, T. Fukushima and T. Aida, Chem. Commun., 2005,
101–103.
19 R. I. Gearba, M. Lehmann, J. Levin, D. A. Ivanov, M. H. J. Koch,
J. Barbera, M. G. Debije, J. Piris and Y. H. Geerts, Adv. Mater.,
2003, 15, 1614–1618.
20 S. Sergeyev, W. Pisula and Y. H. Geerts, Chem. Soc. Rev., 2007, 36,
1902–1929.
21 R. Zniber, R. Achour, M. Z. Cherkaoui, B. Donnio, L. Gehringer
and D. Guillon, J. Mater. Chem., 2002, 12, 2208–2213.
22 F. C. Krebs, N. C. Schiodt, W. Batsberg and K. Bechgaard,
Synthesis, 1997, 1285–1290.
This work was primarily supported by Fueling the Future
Center for Chemical Innovation (CHE 0739227), sponsored
by National Science Foundation. This material is also based
upon work supported in part by the U. S. Army Research
Laboratory and the U. S. Army Research Office under grant
number 54635CH, and by the National Science Foundation
Materials Research and Science Center on Polymers (DMR
0820506).
23 R. Huisgen, Proc. Chem. Soc., London, 1961, 357.
24 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004–2021.
25 T. E. Springer, T. A. Zawodzinski, M. S. Wilson and S. Gottesfeld,
J. Electrochem. Soc., 1996, 143, 587–599.
26 P. D. Beattie, F. P. Orfino, V. I. Basura, K. Zychowska, J. F. Ding,
C. Chuy, J. Schmeisser and S. Holdcroft, J. Electroanal. Chem.,
2001, 503, 45–56.
Notes and references
1 K. D. Kreuer, S. J. Paddison, E. Spohr and M. Schuster, Chem.
Rev., 2004, 104, 4637–4678.
27 X. Z. Yuan, H. J. Wang, J. C. Sun and J. J. Zhang, Int. J.
Hydrogen Energy, 2007, 32, 4365–4380.
2 M. E. Schuster and W. H. Meyer, Annu. Rev. Mater. Res., 2003,
33, 233–261.
28 J. C. Loren, A. Krasinski, V. V. Fokin and K. B. Sharpless,
Synlett, 2005, 18, 2847–2850.
c
5568 Chem. Commun., 2011, 47, 5566–5568
This journal is The Royal Society of Chemistry 2011