G. Tanabe et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3159–3162
3161
the methyl as were exemplified in the present study would in-
crease the inhibitory activity of the molecule.
Further SAR studies in search for stronger a-glucosidase inhib-
itors of this sulfonium type of compounds are in progress.
OBn
OR
OH
3'
OH
H21C'
NOE
HO
OH
OBn
iii
O
S+
OR
Cl-
OR
10
H
S+
i
1
BnO
4
+
S
Acknowledgments
OBn
BnO
HO
OH
OH
BnO
19
9
This work was supported by ‘High-Tech Research Center’ Pro-
ject for Private Universities: matching fund subsidy from MEXT
(Ministry of Education, Culture, Sports, Science and Technology),
2007–2011, and also supported by a grant-in aid for scientific re-
search by the Japan society for the promotion of science (JSPS).
X = BF4
X = Cl
OBn
18a
BnO
ii
a : R = CH3, b : R = C2H5, c : R = C13H27
-
OH
BF4
OPMB
OBn
S
S+
OBn
PMBO
i
References and notes
HO
+
OPMB
O
PMBO
OH
HO
1. (a) de Melo, E. B.; Gomes, A.; Da, S.; Carvalho, I. Tetrahedron 2006, 62, 10277; (b)
Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem. Rev. 2002, 102, 515; (c)
Dwek, R. A. Chem. Rev. 1996, 96, 683; Iminosugars as Glycosidase Inhibitors:
Nojirimycin and Beyond; Stütz, A. E., Ed.; Wiley-VCH: Weinheim Germany,
1999.
2. (a) Yoshikawa, M.; Murakami, T.; Shimada, H.; Matsuda, H.; Yamahara, J.;
Tanabe, G.; Muraoka, O. Tetrahedron Lett. 1997, 38, 8367; (b) Yoshikawa, M.;
Morikawa, T.; Matsuda, H.; Tanabe, G.; Muraoka, O. Bioorg. Med. Chem. 2002, 10,
1547.
10d
18b
9d
Scheme 2. Reagents and conditions: (i) HBF4ꢀ(CH3)2O, CH2Cl2, ꢁ60 °C; (ii) IRA-400 J
(Clꢁ form), MeOH–H2O, rt; (iii) H2, Pd–C, 80% AcOH, 50–60 °C, then 10% aq
HCl–CH3OH (1:100, v/v), rt.
3. Yoshikawa, M.; Murakami, T.; Yashiro, K.; Matsuda, H. Chem. Pharm. Bull. 1998,
46, 1339.
4. Yoshikawa, M.; Xu, F.; Nakamura, S.; Wang, T.; Matsuda, H.; Tanabe, G.;
Muraoka, O. Heterocycles 2008, 75, 1397.
5. (a) Jayakanthan, K.; Mohan, S.; Pinto, B. M. J. Am. Chem. Soc. 2009, 131, 5621; (b)
Johnston, B. D.; Jensen, H. H.; Pinto, B. M. J. Org. Chem. 2006, 71, 1111; (c)
Tanabe, G.; Sakano, M.; Minematsu, T.; Matusda, H.; Yoshikawa, M.; Muraoka,
O. Tetrahedron 2008, 64, 10080; (d) Muraoka, O.; Xie, W.; Osaki, S.; Kagawa, A.;
Tanabe, G.; Amer, M. F. A.; Minematsu, T.; Morikawa, T.; Yoshikawa, M.
Tetrahedron 2010, 66, 3717.
OH OH
OH
Cl-
S+
OH
OCH3
HO
OH
HO
3'-O-methylneoponkoranol (20)
6. (a) Minami, Y.; Kuriyama, C.; Ikeda, K.; Kato, A.; Takebayashi, K.; Adachi, I.;
Fleet, G. W. J.; Kettawan, A.; Okamoto, T.; Asano, N. Bioorg. Med. Chem. 2008, 16,
2734; (b) Tanabe, G.; Yoshikai, K.; Hatanaka, T.; Yamamoto, M.; Shao, Y.;
Minematsu, T.; Muraoka, O.; Wang, T.; Matsuda, H.; Yoshikawa, M. Bioorg. Med.
Chem. 2007, 15, 3926; (c) Tanabe, G.; Xie, W.; Ogawa, A.; Cao, C.; Minematsu, T.;
Yoshikawa, M.; Muraoka, O. Bioorg. Med. Chem. Lett. 2009, 19, 2195.
7. (a) Ozaki, S.; Oe, H.; Kitamura, S. J. Nat. Prod. 2008, 71, 981; (b) Oe, H.; Ozaki, S.
Biosci. Biotechnol. Biochem. 2008, 72, 1962; (c) Muraoka, O.; Xie, W.; Tanabe, G.;
Amer, M. F. A.; Minematsu, T.; Yoshikawa, M. Tetrahedron Lett. 2008, 49, 7315.
8. Xie, W.; Tanabe, G.; Akaki, J.; Morikawa, T.; Ninomiya, K., Minematsu, T.,
Yoshikawa, M.; Wu, X.; Muraoka, O. Bioorg. Med. Chem. 2011, 19, 2015.
9. Recent review relevant to the work: (a) Mohan, S.; Pinto, B. M. Carbohydr. Res.
2007, 342, 1551; (b) Tanabe, G.; Matsuoka, K.; Minematsu, T.; Morikawa, T.;
Ninomiya, K.; Matsuda, H.; Yoshikawa, M.; Murata, H.; Muraoka, O. J. Pharm.
Soc. Jpn. 2007, 127(Suppl. 4), 129; (c) Nasi, R.; Patrick, B. O.; Sim, L.; Rose, D. R.;
Pinto, B. M. J. Org. Chem. 2008, 73, 6172; (d) Tanabe, G.; Hatanaka, T.;
Minematsu, T.; Matsuda, H.; Yoshikawa, M.; Muraoka, O. Heterocycles 2009, 79,
1093; (e) Mohan, S.; Jayakanthan, K.; Nasi, R.; Kuntz, D. A.; Rose, D. R.; Pinto, B.
M. Org. Lett. 2010, 12, 1088; (f) Sim, L.; Jayakanthan, K.; Mohan, S.; Nasi, R.;
Johnston, B. D.; Pinto, B. M.; Rose, D. R. Biochemistry 2010, 49, 443; (g)
Nakamura, S.; Takahira, K.; Tanabe, G.; Morikawa, T.; Sakano, M.; Ninomiya, K.;
Yoshikawa, M.; Muraoka, O.; Nakanishi, I. Bioorg. Med. Chem. Lett. 2010, 20,
4420; (h) Eskandari, R.; Kuntz, D. A.; Rose, D. R.; Pinto, B. M. Org. Lett. 2010, 12,
1632; (i) Eskandari, R.; Jayakanthan, K.; Kuntz, D. A.; Rose, D. R.; Pinto, B. M.
Bioorg. Med. Chem. 2010, 18, 2829; (j) Eskandari, R.; Jones, K.; Rose, D. R.; Pinto,
B. M. Bioorg. Med. Chem. Lett. 2010, 20, 5686. and references cited therein.
10. Abushanab, E.; Vemishetti, P.; Leiby, R. W.; Singh, H. K.; Mikkilineni, A. B.; Wu,
D. C.-J.; Saibaba, R.; Panzica, R. P. J. Org. Chem. 1988, 53, 2598.
Table 2
IC50 Values
antidiabetics against disaccharidases
(
l
M) of salacinol (1), neosalacinol (5), compounds 9a–9d, and two
Entry
Compound
Sucrase
Maltase
Isomaltase
1
2
3
4
5
6
7
8
1
5
9a
9b
9c
9d
Voglibose
Acarbose
1.6a
1.3a
0.46
0.12
1.3
5.2a
8.0a
5.3
1.7
1.0
1.3a
0.3a
0.39
0.27
0.95
0.14
2.1
0.32
0.2
0.44
1.2
1.5b
1.7b
646b
a
4
Lit.
Lit.
b
16
equal or considerably higher inhibitory activity than the refer-
ences. Against sucrase, all of them were found more active than
original sufonate (1), and 9b showed the highest inhibitory activity
of ca. ten times as potent as 1. It is noteworthy that, against mal-
tase, 9d was ca. ten times more potent than 1, and exerted superior
inhibitory activity to both acarbose and voglibose. The molecule is
the most potent inhibitor among this type of molecules so far.
Thus, it was concluded that higher hydrophobic property was pre-
ferred as the substituent on C30 for higher inhibitory activity. The
enhanced inhibitory activity encountered in the case of 9d would
11. For the enantiomer of 12, see: Marco, J. A.; Carda, M.; González, F.; Rodríguez,
S.; Murga, J. Liebigs Ann. 1996, 1801.
12. Vijayasaradhi, S.; Beedimane, M. N.; Aidhen, I. S. Synthesis 2005, 2267.
13. Synthesis of 19a: To a mixture of epoxide 10a (100 mg, 0.48 mmol), thiosugar
18a (168 mg, 0.4 mmol), and CH2Cl2 (2 ml) was added tetrafluoroboric acid
dimethyl ether complex (HBF4ꢀ(CH3)2O, 63 ll, 0.52 mmol) at ꢁ60 °C. The
reaction mixture was stirred for 3 h and concentrated in vacuo. The residue
was treated with ion exchange resin IRA-400 J (Clꢁ form) in methanol (3 ml)
at room temperature. Removal of the solvent left an oil (290 mg), which
on column chromatography (CHCl3 ? CHCl3–MeOH, 100:1 ? 50:1), gave
1,4-dideoxy-2,3,5-tri-O-benzyl-1,4-[(R)-[(2S,3S)-4-benzyloxy-2-hydroxy-3-
be ascribed to
p/p or CH/p
interactions17 of the phenyl ring at
C30 with surrounding aromatic residues of the active site in the
enzyme.
methoxybutyl]episulfoniumylidene]-
D
-arabinitol chloride (19a, 234 mg, 88%)
ꢁ7.3 (c = 0.65, CHCl3). IR (neat): 3174, 1454, 1404, 1365,
1H NMR (500 MHz, CDCl3) d: 3.41 (3H, s, OCH3),
as a colorless oil, ½a D24
ꢂ
1261, 1095, 1072, 1030 cmꢁ1
.
Eskandari et al. have reported very recently the synthesis and
evaluation of 30-O-methylneoponkoranol (20), and mentioned that
replacement of the sulfonate moiety with methyl group did not
contribute to the improvement of the inhibitory activity against
ntMGAM.9j We presume that the more hydrophobic moieties than
3.66–3.70 (2H, m, H-30 and H-40a), 3.76 (2H, d-like, J = ca. 8.0 Hz, H-5a and H-
5b), 3.80 (1H, dd, J = 11.5, 3.8 Hz, H-40b), 4.10 (1H, dd, J = 12.6, 3.7 Hz, H-10a),
4.11–4.15 (2H, m, H-1a and H-4), 4.15 (1H, dd-like, J = ca. 12.6, 7.4 Hz, H-10b),
4.17-4.18 (1H, m, H-3), 4.31 (1H, dd, J = 13.2, 3.8 Hz, H-1b), 4.34–4.39 (1H, m,
H-20), 4.39–4.41 (1H, m, H-2), 4.39 (1H, d, J = 11.7 Hz, OCH2Ph), 4.47–4.61 (7H,