P. Bach et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2877–2881
2881
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Cattaneo, M. Eur. Heart J. Suppl. 2008, 10, 133; (b) Storey, R. F. Curr. Pharm.
Des. 2006, 12, 1255.
2. Yusuf, S.; Zhao, F.; Mehta, S. R.; Chrolavicius, S.; Tognoni, G.; Fox, K. K. N. Eng. J.
Med. 2001, 345, 494.
3. (a) Savi, P.; Pereillo, J. M.; Uzabiaga, M. F.; Combalbert, J.; Picard, C.; Maffrand, J.
P.; Pascal, M.; Herbert, J. M. Thromb. Haemost. 2000, 84, 891; (b) Sugidachi, A.;
Ogawa, T.; Kurihara, A.; Hagihara, K.; Jakubowski, J. A.; Hashimoto, M.; Niitsu,
Y.; Asai, F. J. Thromb. Haemost. 2007, 5, 1545.
Figure 2. SAR for piperazinyl-pyridine ureas against P2Y12
.
4. van Giezen, J. J. J.; Nilsson, L.; Berntsson, P.; Wissing, B.; Giordanetto, F.;
Tomlinson, W.; Greasley, P. J. J. Thromb. Haemost. 2009, 7, 1556.
5. Wallentin, L.; Becker, R. C.; Budaj, A.; Cannon, C. P.; Emanuelsson, H.; Held, C.;
Horrow, J.; Husted, S.; James, S.; Katus, H.; Mahaffey, K. W.; Scirica, B. M.;
Skene, A.; Steg, P. G.; Storey, R. F.; Harrington, R. A. N. Eng. J. Med. 2009, 361,
1045.
6. (a) Springthorpe, B.; Bailey, A.; Barton, P.; Birkinshaw, T. N.; Bonnert, R. V.;
Brown, R. C.; Chapman, D.; Dixon, J.; Guile, S. D.; Humphries, R. G.; Hunt, S. F.;
Ince, F.; Ingall, A. H.; Kirk, I. P.; Leeson, P. D.; Leff, P.; Lewis, R. J.; Martin, B. P.;
McGinnity, D. F.; Mortimore, M. P.; Paine, S. W.; Pairaudeau, G.; Patel, A.; Rigby,
A. J.; Riley, R. J.; Teobald, B. J.; Tomlinson, W.; Webborn, P. J. H.; Willis, P. A.
Bioorg. Med. Chem. Lett. 2007, 17, 6013; (b) van Giezen, J. J. J.; Humphries, R. G.
Semin. Thromb. Hemost. 2005, 31, 195.
7. (a) Parlow, J. J.; Burney, M. W.; Case, B. L.; Girard, T. J.; Hall, K. A.; Harris, P. K.;
Hiebsch, R. R.; Huff, R. M.; Lachance, R. M.; Mischke, D. A.; Rapp, S. R.;
Woerndle, R. S.; Ennis, M. D. J. Med. Chem. 2010, 53, 2010; (b) Parlow, J. J.;
Burney, M. W.; Case, B. L.; Girard, T. J.; Hall, K. A.; Harris, P. K.; Hiebsch, R. R.;
Huff, R. M.; Lachance, R. M.; Mischke, D. A.; Rapp, S. R.; Woerndle, R. S.; Ennis,
M. D. Bioorg. Med. Chem. Lett. 2010, 20, 1388; (c) Parlow, J. J.; Burney, M. W.;
Case, B. L.; Girard, T. J.; Hall, K. A.; Hiebsch, R. R.; Huff, R. M.; Lachance, R. M.;
Mischke, D. A.; Rapp, S. R.; Woerndle, R. S.; Ennis, M. D. Bioorg. Med. Chem. Lett.
2009, 19, 4657; (d) Parlow, J. J.; Burney, M. W.; Case, B. L.; Girard, T. J.; Hall, K.
A.; Hiebsch, R. R.; Huff, R. M.; Lachance, R. M.; Mischke, D. A.; Rapp, S. R.;
Woerndle, R. S.; Ennis, M. D. Bioorg. Med. Chem. Lett. 2009, 19, 6148.
8. Kortum, S. W.; Lachance, R. M.; Schweitzer, B. A.; Yalamanchili, G.; Rahman, H.;
Ennis, M. D.; Huff, R. M.; TenBrink, R. E. Bioorg. Med. Chem. Lett. 2009, 19, 5919.
9. Baqi, Y.; Atzler, K.; Köse, M.; Glänzel, M.; Müller, C. E. J. Med. Chem. 2009, 52,
3784.
feature in this region. This observation is underlined by the po-
tency of the 1- and 2-naphthyls (40, 56 and 57) mentioned above.
The substitutions made on the aryl group in the benzyl series (Ta-
ble 3) had little or no effect on potency. Examples of variation of
the C-ring beyond phenyls, benzyls, and naphthyls are shown in
Table 4. Phenyl-substituted cyclopropyl 81 retained the potency
levels of 2-phenylethyl 41. The potency of compounds with hetero-
aromatic C-rings spanned from no potency (e.g., isoxazole 82) to
moderate potency (e.g., thiophenes 84 and 85). Non-aromatic sub-
stituents in this position in general gave compounds with no or
low potency, exemplified by i-propyl compound 83 and tetrahy-
dropyranyl compound 86.
These data suggest that 1-naphthyl, 2-naphthyl, or lipophilic 3-
substituted phenyl groups are preferred as C-ring, and this could
be further investigated. The SAR is summarized in Figure 2 below.
In vitro clearance in rat liver microsomes was determined for a
selection of potent compounds with different types of C-rings: 1,
33, 40, and 64. All showed high clearance (i.e., low metabolic sta-
bility) with CLint values of 713, 519, 432 and 720
respectively. In vitro clearance in human liver microsomes for
compounds 40 and 64 were 280 and 565 M/min/mg, respectively.
lM/min/mg,
10. Douglass, J. G.; deCamp, J. B.; Fulcher, E. H.; Jones, W.; Mahanty, S.; Morgan, A.;
Smirnov, D.; Boyer, J. L.; Watson, P. S. Bioorg. Med. Chem. Lett. 2008, 18, 2167.
11. Douglass, J. G.; Patel, R. I.; Yerxa, B. R.; Shaver, S. R.; Watson, P. S.; Bednarski, K.;
Plourde, R.; Redick, C. C.; Brubaker, K.; Jones, A. C.; Boyer, J. L. J. Med. Chem.
2008, 51, 1007.
l
Metabolite studies showed the corresponding carboxylic acid as
the only metabolite of compound 1 in both rat liver microsomes
and human liver microsomes.21
12. Purchased from Maybridge Chemical Company, Cornwall UK.
13. Potencies were determined in a P2Y12 receptor filtration binding assay and a
In summary, we have identified a new series of piperazinyl-pyr-
idine ureas, with several compounds showing sub-micromolar
potencies towards P2Y12. Our SAR investigations showed that the
3-ethoxycarbonyl substituent on the pyridine ring, the urea N–H
of the linker, and the aromatic ring (C-ring) contribute significantly
to potency. Furthermore, we have shown that solubility could be
increased by shifting from 2-CF3/5-CN to 2-H/5-Cl pyridines. Our
efforts to further improve the properties, including solubility and
metabolic stability, of compounds containing the piperazinyl-pyr-
idine scaffold will be reported in due course.
P2Y12 receptor GTP
cS signalling assay. See Supplementary data for details on
the screening assays.
14. Sundmeier, M.; Zapf, A.; Beller, M.; Sans, J. Tetrahedron Lett. 2001, 42, 6707.
15. Mosti, L.; Menozzi, G.; Schenone, P.; Dorigo, P.; Gaion, R. M.; Belluco, P. Farmaco
1992, 47, 427.
16. (a) Jones, R. G. J. Am. Chem. Soc. 1951, 73, 3684; (b) Palanki, M. S. S.; Erdman, P.
E.; Gayo-Fung, L. M.; Shevlin, G. I.; Sullivan, R. W.; Goldman, M. E.; Ransone, L.
J.; Bennett, B. L.; Manning, A. M.; Suto, M. J. J. Med. Chem. 2000, 43, 3995.
17. Screening values are given as single values or as a mean of two measurements
with maximum four times difference between highest and lowest screening
value. In the SAR discussion, a difference in potency between compounds P3
times is considered significant. See Supplementary data for details on the
screening assays.
18. See Supplementary data for screening procedure for solubility.
19. Blomberg, N.; Cosgrove, D. A.; Kenny, P. W.; Kolmodin, K. J. Comput. Aided Mol.
Des. 2009, 23, 513.
Acknowledgments
Assistance from the plate purification group at AstraZeneca
R&D, Mölndal, is gratefully acknowledged. Pia Berntsson, Britt-
Marie Wissing and Linda Nilsson are gratefully thanked for per-
forming the screening assays. Proof-reading by Ruth Bylund and
Thomas Antonsson is highly appreciated.
20. See Supplementary data for graph.
21. Compound (initial concentration 10
protein.
lM) after 60 min at 1 mg compound/mL