10.1002/chem.202000166
Chemistry - A European Journal
COMMUNICATION
substitution product was obtained with structure confirmed by X-
ray crystallography (see SI). This result suggested a Heck-type
mechanism might occurred with this substrate instead of direct C-
Se bond oxidative addition as proposed in literature.[10a] This
excellent chemo and stereoselectivity greatly highlighted the
potential synthetic utility of these 1,2-diselenide compounds
under this new and mild gold redox conditions.
Jones, C. A. Russell, J. Am. Chem. Soc. 2014, 136, 254-264; k) Y. Yu, W.
Yang, D. Pflästerer, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2014, 53,
1144-1147; l) M. Pažický, A. Loos, M. J. Ferreira, D. Serra, N. Vinokurov,
F. Rominger, C. Jäkel, A. S. K. Hashmi, M. Limbach, Organometallics 2010,
29, 4448-4458; m) A. S. K. Hashmi, T. D. Ramamurthi, F. Rominger, J.
Organomet. Chem. 2009, 694, 592-597; n) G. Zhang, Y. Peng, L. Cui, L.
Zhang, Angew. Chem. Int. Ed. 2009, 48, 3112-3115; o) S. Taschinski, R.
Döpp, M. Ackermann, F. Rominger, F. de Vries, M. F. S. J. Menger, M.
Rudolph, A. S. K. Hashmi, J. E. M. N. Klein, Angew. Chem. Int.
Ed. 2019, 58, 16988-16993; p) Y. Yang, L. Eberle, F. F. Mulks, J. F.
Wunsch, M. Zimmer, F. Rominger, M. Rudolph, A. S. K. Hashimi, J. Am.
Chem. Soc. 2019, 141, 17414-17420; q) Y. Yang, J. Schießl, S. Zallouz, V.
Göker, J. Gross, M. Rudolph, F. Rominger, A. S. K. Hashmi, Chem. Eur.
J. 2019, 25, 9624-9628; r) L. Huang, F. Rominger, M. Rudolph, A. S. K.
Hashimi, Chem. Commun. 2016, 52, 6435-6438; s) L. Huang, M. Rudolph,
F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 4808-
4813.d
In conclusion, we herein reported
a
gold-catalyzed
diselenation reaction of alkynes and allenes. Excellent yields and
stereoselectivity as well as broad reaction scope were achieved
for this transformation. Au(I/III) mechanism was proposed based
on the cross-over experiment, control experiments and in-situ MS
results. Other mild oxidants are currently under investigation in
our lab.
[6] a) B. Sahoo, M. N. Hopkinson, F. Glorius, J. Am. Chem. Soc. 2013, 135,
5505-5508; b) A. Tlahuext-Aca, M. N. Hopkinson, R. A. Garza-Sanchez, F.
Glorius, Chem. Eur. J. 2016, 22, 5909-5913; c) R. Cai, M. Lu, E. Y. Aguilera,
Y. Xi, N. G. Akhmedov, J. L. Petersen, H. Chen, X. Shi, Angew. Chem. Int.
Ed. 2015, 54, 8772-8776.
Acknowledgements
We are grateful to NSF (CHE-1665122 and CHE-1915878) and
NIH (1R01GM120240-01) for financial supports.
[7] a) M. O. Akram, A. Das, I. Chakrabarty, N. T. Patil, Org. Lett. 2019, 21,
8101-8105; b) M. J. Harper, C. J. Arthur, J. Crosby, E. J. Emmett, R. L.
Falconer, A. J. Fensham-Smith, P. J. Gates, T. Leman, J. E. McGrady, J.
F. Bower, C. A. Russell, J. Am. Chem. Soc. 2018, 140, 4440-4445; c) M.
O. Akram, P. S. Mali, N. T. Patil, Org. Lett. 2017, 19, 3075-3078; d) F.
Chahdoura, N. Lassauque, D. Bourissou, A. Amgoune, Org. Chem. Front.
2016, 3, 856-860; e) J. Guenther, S. Mallet-Ladeira, L. Estevez, K. Miqueu,
A. Amgoune, D. Bourissou, J. Am. Chem. Soc. 2014, 136, 1778-1781; f) J.
Serra, C. J. Whiteoak, F. Acuña-Parés, M. Font, J. M. Luis, J. Lloret-Fillol,
X. Ribas, J. Am. Chem. Soc. 2015, 137, 13389-13397; g) J. Serra, T.
Parella, X. Ribas, Chem. Sci. 2017, 8, 946-952; h) M. Joost, A. Zeineddine,
L. Estévez, S. Mallet−Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, J.
Am. Chem. Soc. 2014, 136, 14654-14657; i) A. Zeineddine, L. Estévez, S.
Mallet-Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, Nat. Commun. 2017,
8, 565; j) M. D. Levin, F. D. Toste, Angew. Chem. Int. Ed. 2014, 53, 6211-
6215.
Keywords: gold redox catalysis • deselenation • mild oxidant •
alkyne • allene
[1] a) A. S. K. Hashmi, Gold Bulletin 2004, 37, 51-65; b) A. Fürstner, P. W.
Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; c) A. S. K. Hashmi,
Chem. Rev. 2007, 107, 3180-3211; d) E. Jiménez-Núñez, A. M.
Echavarren, Chem. Rev. 2008, 108, 3326-3350; e) D. J. Gorin, B. D. Sherry,
F. D. Toste, Chem. Rev. 2008, 108, 3351-3378; f) R. Dorel, A. M.
Echavarren, Chem. Rev. 2015, 115, 9028-9072; g) A. M. Asiri, A. S. K.
Hashmi, Chem. Soc. Rev. 2016, 45, 4471-4503; h) Z. Zheng, Z. Wang, Y.
Wang, L. Zhang, Chem. Soc. Rev. 2016, 45, 4448-4458; i) Y. Li, W. Li, J.
Zhang, Chem. Eur. J. 2017, 23, 467-512; j) X. Zhao, M. Rudolph, A. S. K.
Hashimi, Chem. Commun., 2019, 55, 12127-12135.
[2] a) C. Praveen, Coord. Chem. Rev. 2019, 392, 1-34; b) D. J. Gorin, F. D.
Toste, Nature 2007, 446, 395-403; c) M. Pernpointner, A. S. K. Hashmi, J.
Chem. Theory Comput. 2009, 5, 2717-2725.
[8] a) J. Wang, S. Zhang, C. Xu, L. Wojtas, N. G. Akhmedov, H. Chen, X. Shi,
Angew. Chem. Int. Ed. 2018, 57, 6915-6920; b) X. Ye, P. Zhao, S. Zhang,
Y. Zhang, Q. Wang, C. Shan, L. Wojtas, H. Guo, H. Chen, X. Shi, Angew.
Chem. Int. Ed., 2019, 58, 17226-17230.
[3] a) J. L. Mascareñas, I. Varela, F. López, Acc. Chem. Res. 2019, 52, 465-
479; b) H. Schmidbaur, A. Schier, Organometallics 2010, 29, 2-23; c) Z. Li,
C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239-3265; d) A. Arcadi, Chem.
Rev. 2008, 108, 3266-3325; e) A. S. K. Hashmi, G. J. Hutchings, Angew.
Chem. Int. Ed. 2006, 45, 7896-7936; f) M. Chiarucci, M. Bandini, Beilstein
J. Org. Chem. 2013, 9, 2586-2614.
[9] a) M. Ackermann, J. Bucher, M. Rappold, K. Graf, F. Romingere, A. S. K.
Hashimi, Chem. Asian J. 2013, 32, 1786-1794; b) A. S. K. Hashimi, K. Graf,
M. Ackermann, F. Rominger, ChemCatChem 2013, 5, 1200-1204.
[10] a) A. L. Stein, F. N. Bilheri, G. Zeni, Chem. Commun. 2015, 51, 15522-
15525; b) F. DOnofrio, L. Parlanti, G. Piancatelli, Synlett, 1996, 1, 63-64.
[11] a) A. Ogawa, M. Doi, I. Ogawa, T. Hirao, Angew. Chem. Int. Ed. 1999, 38,
2027-2029; b) A. Ogawa, I. Ogawa, N. Sonoda, J. Org. Chem. 2000, 65,
7682-7685; c) A. Ogawa, R. Obayashi, M. Doi, N. Sonoda, T. Hirao, J. Org.
Chem. 1998, 63, 4277-4281; d) A. Ogawa, R. Obayashi, H. Ine, Y. Tsuboi,
N. Sonoda, T. Hirao, J. Org. Chem. 1998, 63, 881-884; e) A. Ogawa, I.
Ogawa, R. Obayashi, K. Umezu, M. Doi, T. Hirao, J. Org. Chem. 1999, 64,
86-92; f) G. Mugesh, W.-W. du Mont, H. Sies, Chem. Rev. 2001, 101, 2125-
2180; g) C. W. Nogueira, G. Zeni, J. B. T. Rocha, Chem. Rev. 2004, 104,
6255-6286.
[4] S. G. Bratsch, J. Phys. Chem. Ref. Data 1989, 18, 1-21.
[5] a) M. Hofer, T. de Haro, E. Gómez-Bengoa, A. Genoux, C. Nevado, Chem.
Sci. 2019, 10, 8411-8420; b) Y. Yang, P. Antoni, M. Zimmer, K. Sekine, F.
F. Mulks, L. Hu, L. Zhang, M. Rudolph, F. Rominger, A. S. K. Hashmi,
Angew. Chem. Int. Ed. 2019, 131, 5129-5133; c) A. A. Jimoh, S. Hosseyni,
X. Ye, L. Wojtas, Y. Hu, X. Shi, Chem. Commun. 2019, 55, 8150-8153; d)
J. Xie, K. Sekine, S. Witzel, P. Krämer, M. Rudolph, F. Rominger, A. S. K.
Hashmi, Angew. Chem. Int. Ed. 2018, 57, 16648-16653; e) A. C. Shaikh,
D. S. Ranade, P. R. Rajamohanan, P. P. Kulkarni, N. T. Patil, Angew.
Chem. Int. Ed. 2017, 56, 757-761; f) H. Peng, R. Cai, C. Xu, H. Chen, X.
Shi, Chem. Sci. 2016, 7, 6190-6196; g) S. Kim, J. Rojas-Martin, F. D. Toste,
Chem. Sci. 2016, 7, 85-88; h) Y. He, H. Wu, F. D. Toste, Chem. Sci. 2015,
6, 1194-1198; i) H. Peng, Y. Xi, N. Ronaghi, B. Dong, N. G. Akhmedov, X.
Shi, J. Am. Chem. Soc. 2014, 136, 13174-13177; j) L. T. Ball, G. C. Lloyd-
[12] L. Nunes dos Santos Comprido, J. E. M. N. Klein, G. Knizia, J. Kästner, A.
S. K. Hashmi, Chem. Eur. J. 2017, 23, 10901-10905.
[13] A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232-5241.
This article is protected by copyright. All rights reserved.