ACS Medicinal Chemistry Letters
LETTER
(2) Manke, I. A.; Lowery, D. M.; Nguyen, A.; Yaffe, M. B. BRCT
repeats as phosphopeptide-binding modules involved in protein target-
ing. Science 2003, 302, 636–9.
(3) Yu, X.; Chini, C. C.; He, M.; Mer, G.; Chen, J. The BRCT domain
is a phospho-protein binding domain. Science 2003, 302, 639–42.
(4) Kim, H.; Huang, J.; Chen, J. CCDC98 is a BRCA1-BRCT
domain-binding protein involved in the DNA damage response. Nat.
Struct. Mol. Biol. 2007, 14, 710–5.
(5) Wang, B.; Matsuoka, S.; Ballif, B. A.; Zhang, D.; Smogorzewska,
A.; Gygi, S. P.; Elledge, S. J. Abraxas and RAP80 form a BRCA1 protein
complex required for the DNA damage response. Science 2007, 316,
1194–8.
(23) Shakespeare, W. C. SH2 domain inhibition: a problem solved?
Curr. Opin. Chem. Biol. 2001, 5, 409–415.
(24) Yuan, Z.; Kumar, E. A.; Kizhake, S.; Natarajan, A. Structure-
Activity Relationship Studies To Probe the Phosphoprotein Binding Site
on the Carboxy Terminal Domains of the Breast Cancer Susceptibility
Gene 1. J. Med. Chem. 2011, 54, 4264–4268.
(25) Campbell, S. J.; Edwards, R. A.; Glover, J. N. Comparison of the
structures and peptide binding specificities of the BRCT domains of
MDC1 and BRCA1. Structure 2010, 18, 167–176.
(26) Shiozaki, E. N.; Gu, L.; Yan, N.; Shi, Y. Structure of the BRCT
repeats of BRCA1 bound to a BACH1 phosphopeptide: implications for
signaling. Mol. Cell 2004, 14, 405–12.
(6) Cantor, S. B.; Bell, D. W.; Ganesan, S.; Kass, E. M.; Drapkin, R.;
Grossman, S.; Wahrer, D. C.; Sgroi, D. C.; Lane, W. S.; Haber, D. A.;
Livingston, D. M. BACH1, a novel helicase-like protein, interacts
directly with BRCA1 and contributes to its DNA repair function. Cell
2001, 105, 149–60.
(27) Warren, L. DeLano PyMOL User’s Guide; 2004.
(28) Lokesh, G. L.; Rachamallu, A.; Kumar, G. D.; Natarajan, A.
High-throughput fluorescence polarization assay to identify small mo-
lecule inhibitors of BRCT domains of breast cancer gene 1. Anal.
Biochem. 2006, 352, 135–41.
(7) Varma, A. K.; Brown, R. S.; Birrane, G.; Ladias, J. A. Structural
basis for cell cycle checkpoint control by the BRCA1-CtIP complex.
Biochemistry 2005, 44, 10941–6.
(8) Williams, R. S.; Green, R.; Glover, J. N. Crystal structure of the
BRCT repeat region from the breast cancer-associated protein BRCA1.
Nat. Struct. Biol. 2001, 8, 838–842.
(9) Williams, R. S.; Glover, J. N. Structural consequences of a cancer-
causing BRCA1-BRCT missense mutation. J. Biol. Chem. 2003, 278,
2630–2635.
(29) Simeonov, A.; Yasgar, A.; Jadhav, A.; Lokesh, G. L.; Klumpp, C.;
Michael, S.; Austin, C. P.; Natarajan, A.; Inglese, J. Dual-fluorophore
quantitative high-throughput screen for inhibitors of BRCTÀphospho-
protein interaction. Anal. Biochem. 2008, 375, 60–70.
(30) Nikolovska-Coleska, Z.; Wang, R.; Fang, X.; Pan, H.; Tomita,
Y.; Li, P.; Roller, P. P.; Krajewski, K.; Saito, N. G.; Stuckey, J. A.; Wang, S.
Development and optimization of a binding assay for the XIAP BIR3
domain using fluorescence polarization. Anal. Biochem. 2004, 332,
261–273.
(10) Williams, R. S.; Lee, M. S.; Hau, D. D.; Glover, J. N. Structural
basis of phosphopeptide recognition by the BRCT domain of BRCA1.
Nat. Struct. Mol. Biol. 2004, 11, 519–25.
(11) Yu, X.; Chen, J. DNA damage-induced cell cycle checkpoint
control requires CtIP, a phosphorylation-dependent binding partner of
BRCA1 C-terminal domains. Mol. Cell. Biol. 2004, 24, 9478–86.
(12) Callebaut, I.; Mornon, J. P. From BRCA1 to RAP1: a wide-
spread BRCT module closely associated with DNA repair. FEBS Lett.
1997, 400, 25–30.
(31) Cheng, Y.; Prusoff, W. H. Relationship between the inhibition
constant (K1) and the concentration of inhibitor which causes 50%
inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973,
22, 3099–3108.
(32) Kenakin, T. Pharmacological Analysis of Drug-Receptor Interac-
tion; Lippincott-Raven: Philadelphia, PA, 1997.
(33) Huang, X. Fluorescence polarization competition assay: the
range of resolvable inhibitor potency is limited by the affinity of the
fluorescent ligand. J. Biomol. Screen. 2003, 8, 34–38.
(13) Joseph, P. R.; Yuan, Z.; Kumar, E. A.; Lokesh, G. L.; Kizhake, S.;
Rajarathnam, K.; Natarajan, A. Structural characterization of BRCTÀ
tetrapeptide binding interactions. Biochem. Biophys. Res. Commun. 2010,
393, 207–10.
(14) Lokesh, G. L.; Muralidhara, B. K.; Negi, S. S.; Natarajan, A.
Thermodynamics of phosphopeptide tethering to BRCT: the structural
minima for inhibitor design. J. Am. Chem. Soc. 2007, 129, 10658–9.
(15) Coquelle, N.; Green, R.; Glover, J. N. Impact of BRCA1 BRCT
Domain Missense Substitutions on Phosphopeptide Recognition. Bio-
chemistry 2011, 50, 4579–4589.
(16) Williams, R. S.; Chasman, D. I.; Hau, D. D.; Hui, B.; Lau, A. Y.;
Glover, J. N. Detection of protein folding defects caused by BRCA1-
BRCT truncation and missense mutations. J. Biol. Chem. 2003, 278,
53007–53016.
(17) Thompson, M. E. BRCA1 16 years later: nuclear import and
export processes. FEBS J. 2010, 277, 3072–3078.
(34) Munson, P. J.; Rodbard, D. An exact correction to the “Cheng-
Prusoff” correction. J. Recept. Res. 1988, 8, 533–546.
(35) Roehrl, M. H.; Wang, J. Y.; Wagner, G. A general framework for
development and data analysis of competitive high-throughput screens
for small-molecule inhibitors of proteinÀprotein interactions by fluor-
escence polarization. Biochemistry 2004, 43, 16056–16066.
(36) Krieger, E.; Darden, T.; Nabuurs, S. B.; Finkelstein, A.; Vriend,
G. Making optimal use of empirical energy functions: force-field
parameterization in crystal space. Proteins 2004, 57, 678–683.
(37) Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimization,
and multithreading. J. Comput. Chem. 2010, 31, 455–461.
(38) Wang, J.; Gong, Z.; Chen, J. MDC1 collaborates with TopBP1
in DNA replication checkpoint control. J. Cell Biol. 2011, 193, 267–273.
(39) Leung, C. C.; Gong, Z.; Chen, J.; Glover, J. N. Molecular basis
of BACH1/FANCJ recognition by TopBP1 in DNA replication check-
point control. J. Biol. Chem. 2011, 286, 4292–4301.
(18) Kennedy, R. D.; Quinn, J. E.; Mullan, P. B.; Johnston, P. G.;
Harkin, D. P. The role of BRCA1 in the cellular response to chemother-
apy. J. Natl. Cancer Inst. 2004, 96, 1659–68.
(19) Quinn, J. E.; Kennedy, R. D.; Mullan, P. B.; Gilmore, P. M.;
Carty, M.; Johnston, P. G.; Harkin, D. P. BRCA1 functions as a
differential modulator of chemotherapy-induced apoptosis. Cancer Res.
2003, 63, 6221–6228.
(20) Arkin, M. R.; Wells, J. A. Small-molecule inhibitors of protein-
protein interactions: progressing towards the dream. Nat. Rev. Drug
Discov. 2004, 3, 301–17.
(21) Blazer, L. L.; Neubig, R. R. Small molecule protein-protein
interaction inhibitors as CNS therapeutic agents: current progress and
future hurdles. Neuropsychopharmacology 2009, 34, 126–141.
(22) Pagliaro, L.; Felding, J.; Audouze, K.; Nielsen, S. J.; Terry, R. B.;
Krog-Jensen, C.; Butcher, S. Emerging classes of protein-protein inter-
action inhibitors and new tools for their development. Curr. Opin. Chem.
Biol. 2004, 8, 442–449.
767
dx.doi.org/10.1021/ml200147a |ACS Med. Chem. Lett. 2011, 2, 764–767