Chiral sulfoxides are an intriguing class of molecules.9
During recent years, they have been successfully utilized as
chiral ligands in various kinds of transition-metal-cata-
lyzed asymmetric reactions.9a,b,10 The sulfinyl group is
perfectly featured with both an intrinsic stereogenic center
and binding site to metals. Inspired by these elegant works,
we envisioned probing sulfinyl-based olefin ligands.
To fulfill this idea, one simple design is to assemble molec-
ules that have both sulfinyl and olefin groups attached to a
benzene ring in a 1,2-fashion. As outlined in Scheme 1,
Initially, to examine whether the use of a designed ligand
could lead to catalysis in asymmetric reactions, compound
1a (R1 = R2 = H) was first prepared using 2-bromoben-
zaldehyde as the starting material in two steps,11 and we
evaluated it in Rh-catalyzed conjugate addition of phenyl
boronic acid to 2-cyclohexenone. The reaction proceeded
smoothly at 60 °C in the presence of 1a (3.3 mol %) under
aqueous K3PO4/dioxane and went to completion in
30 min,12 giving the corresponding product in 98%
yield, albeit with low enantioselectivity (8% ee).
When the corresponding sulfoxide ligand where the
vinyl group in 1a has been hydrogenated was used, the
reaction did not occur even after 6 h. This result clearly
indicates the necessity for the olefin donor to be present on
the ligand. Encouraged by these findings, we decided to
synthesize a series of new sulfoxideÀolefin ligands bearing
different R1 and R2 substitutents.
Scheme 1. Chiral SulfoxideÀOlefin Ligand Proposal
Scheme 2. Synthesis of SulfoxideÀOlefin Ligands 1
upon coordination to the metal, the sulfinyl function-
ality can be expected to serve as a nice stereodirecting
group, thus providing effective asymmetric inductions.
Herein, we disclose the first example of chiral sulfinyl-
based olefin ligands and their potential in asymmetric
catalysis.
(5) For our recent work involving on chiral diene ligands in asym-
metric catalysis, see: (a) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-
Q. J. Am. Chem. Soc. 2007, 129, 5336. (b) Feng, C.-G.; Wang, Z.-Q.;
Tian, P.; Xu, M.-H.; Lin, G.-Q. Chem. Asian J. 2008, 3, 1511. (c) Feng,
C.-G.; Wang, Z.-Q.; Shao, C.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2008, 10,
4101. (d) Wang, Z.-Q.; Feng, C.-G.; Zhang, S.-S.; Xu, M.-H.; Lin, G.-Q.
Angew. Chem., Int. Ed. 2010, 49, 5780. (e) Wang, L.; Wang, Z.-Q.; Xu,
M.-H.; Lin, G.-Q. Synthesis 2010, 3263. (f) Zhang, S.-S.; Wang, Z.-Q.;
Xu, M.-H.; Lin, G.-Q. Org. Lett. 2010, 12, 5546. (g) Yang, H.-Y.; Xu,
M.-H. Chem. Commun 2010, 46, 9223.
(6) For leading references, see: (a) Maire, P.; Deblon, S.; Breher, F.;
€
€
€
€
Geier, J.; Bohler, C.; Ruegger, H.; Schonberg, H.; Grutzmacher, H.
€
€
Chem.;Eur. J. 2004, 10, 4198. (b) Piras, E.; Lang, F.; Ruegger, H.;
€
€
Stein, D.; Worle, M.; Grutzmacher, H. Chem.;Eur. J. 2006, 12, 5849.
(c) Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T.
Angew. Chem., Int. Ed. 2005, 44, 4611. (d) Defieber, C.; Ariger, M. A.;
Moriel, P.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 3139. (e)
€
Hahn, B. T.; Tewes, F.; Frohlich, R.; Glorius, F. Angew. Chem., Int. Ed.
2010, 49, 1143. (f) Minuth, T.; Boysen, M. M. K. Org. Lett. 2009, 11,
4212. (g) Liu, Z.-Q.; Du, H.-F. Org. Lett. 2010, 12, 3054. (h) Drinkel, E.;
~
Briceno, A.; Dorta, R.; Dorta, R. Organometallics 2010, 29, 2503.
(7) (a) Organosulfur Chemistry in Asymmetric Synthesis; Toru, T.,
Bolm, C., Eds.; Wiley-VCH: Weinheim, 2008. (b) Chiral Sulfur Ligands:
Asymmetric Catalysis; Pellissier, H., Ed.; Royal Society of Chemistry:
Cambridge, U.K., 2009. (c) Mellah, M.; Voituriez, A.; Schulz, E. Chem.
Rev. 2007, 107, 5133. (d) Pellissier, H. Tetrahedron 2007, 63, 1297.
(8) Jin, S.-S.; Wang, H.; Xu, M.-H. Chem. Commun. 2011, 47, DOI:
10.1039/c1cc12322j.
ꢀ
(9) (a) Fernandez, I.; Khiar, N. Chem. Rev. 2003, 103, 3651. (b) Hiroi,
K.; Sone, T. Curr. Org. Synth. 2008, 5, 305. (c) Pellissier, H. Tetrahedron
~
ꢀ
2006, 62, 5559. (d) Carreno, M. C.; Hernandez-Torres, G.; Ribagorda,
M.; Urbano, A. Chem. Commun. 2009, 6129.
Figure 1. SulfoxideÀolefin ligands with diverse structures.
(10) For recent leading examples, see: (a) Mariz, R.; Luan, X. J.;
Gatti, M.; Linden, A.; Dorta, R. J. Am. Chem. Soc. 2008, 130, 2172. (b)
Burgi, J. J.; Mariz, R.; Gatti, M.; Drinkel, E.; Luan, X.-J.; Blumentritt,
S.; Linden, A.; Dorta, R. Angew. Chem., Int. Ed. 2009, 48, 2768. (c)
Mariz, R.; Poater, A.; Gatti, M.; Drinkel, E.; Buergi, J.; Luan, X.-J.;
Blumentritt, S.; Linden, A.; Cavallo, L.; Dorta, R. Chem.;Eur. J. 2010,
16, 14335. (d) Chen, J.; Chen, J.-M.; Lang, F.; Zhang, X.-Y.; Cun, L.-F.;
Zhu, J.; Deng, J.-G.; Liao, J. J. Am. Chem. Soc. 2010, 132, 4552. (e)
Chen, Q.-A.; Dong, X.; Chen, M.-W.; Wang, D.-S.; Zhou, Y.-G.; Li, Y.-
X. Org .lett. 2010, 12, 1928. (f) Lang, F.; Li, D.; Chen, J.-M.; Chen, J.; Li,
L.-C.; Cun, L.-F.; Zhu, J.; Deng, J.-G.; Liao, J. Adv. Synth. Catal. 2010,
352, 843.
As illustrated in Scheme 2, the synthesis of structurally
diverse sulfoxide-olefin ligands can generally be accomplished
in three concise steps. HornerÀWadsworthÀEmmons reac-
tion of the resulting phosphonate 3 with the corresponding
(11) See the Supporting Information for details.
(12) The reaction was found to be slow at room temperature or 40 °C.
Org. Lett., Vol. 13, No. 13, 2011
3411