The First Total Synthesis of Tarennane
Letters in Organic Chemistry, 2011, Vol. 8, No. 4
263
inflammatory mediators in activated RAW 264.7 cells and whole
blood. Eur. J. Pharmacol., 2006, 538, 188-194.
Zhu, Y.D.; Zhang, P.; Yu, H.P.; Li, J.; Wang, M.W.; Zhao, W.M.
Anti-helicobacter pylori and thrombin inhibitory components from
chinese dragon’s blood, dracaena cochinchinensis. J. Nat. Prod.,
2007, 70(10), 1570-1577.
Shrestha, S. P.; Amano, Y.; Narukawa, Y.; Takeda, T. Nitric oxide
production inhibitory activity of flavonoids contained in trunk
exudates of dalbergia sissoo. J. Nat. Prod., 2008, 71(1), 98-101.
Yang, X.W.; Wang, J.S.; Wang, Y.H.; Xiao, H.T.; Hu, X.J.; Mu,
S.Z.; Ma, Y.L.; Lin, H.; He, H.P.; Li, L.; Hao, X.J. Tarennane and
tarennone, two novel chalcone constituents from Tarenna attenuate.
Planta Med., 2007, 73, 496-498.
Shen, C.C.; Ni, C.L.; Shen, Y.C.; Huang, Y.L.; Kuo, C.H.; Wu,
T.S.; Chen, C.C. Phenolic constituents from the stem bark of
Magnolia officinalis. J. Nat. Prod., 2009, 72(1), 168-171.
a) Kumar, S. K.; Hager, E.; Pettit, C.; Gurulingappa, H.; Davidson,
N. E.; Khan, S. R. Design, synthesis, and evaluation of novel
boronic-chalcone derivatives as antitumor agents. J. Med. Chem.,
2003, 46(14), 2813-2815; b) El-Feraly, F. and Hufford, C. D.
Synthesis and carbon-13 nuclear magnetic resonance assignments
of xenognosin. J. Org. Chem., 1982, 47(8), 1527-1530; c)
Kurosawa, K.; Hashiba, A.; Takahashi, H. Synthesis of 4-
cinnamylidene-2,5- cyclohexadien- 1-ones. Bull. Chem. Soc. Jpn.,
1978, 51(12), 3612-3615; d) Ito, C.; Itoigawa, M.; Kanematsu, T.;
Imamura, Y.; Tokuda, H.; Nishino, H.; Furukawa, H. Synthetic
cinnamylphenol derivatives as cancer chemopreventive agents.
Eur. J. Med. Chem., 2007, 42(7), 902-909; e) Ishikawa, T.;
Kadoya, R.; Arai, M.; Takahashi, H.; Kaisi, Y.; Mizuta, T.;
Yoshikai, K.; Saito, S. Revisiting [3+3] route to 1,3-
The key step of the synthesis relies on a highly regioselective
Heck reaction applying a free phenol iodide and a
homogeneous palladium catalyst. The outstanding features
of the last Heck coupling reaction include: (i) the phenolic
hydroxyl group is not protected, different from the literature
method [14]; (ii) the position of the isolated carbon-carbon
double bond on the molecule of intermediate 10, unlike other
common Heck reactions, is not connected to ethers, carbonyl
groups or benzene rings. The overall yield was 14%. Anti-
angiogenisis biological evaluations of the final target are
currently being investigated in model organism. The SAR
studies of the derivatives and synthetic intermediates are
underway. This is a highly convergent and flexible synthetic
strategy which not only provides access to the target
molecule 1, but also provides a new insight on the synthesis
of chalcone analogues containing a propylene linker between
an aromatic ring and a non-aromatic one.
[3]
[4]
[5]
[6]
[7]
ACKNOWLEDGEMENT
This work was supported by the National Major Program
of China during the 11th Five-Year Plan Period
(2009ZX09501-015).
cyclohexanedione
frameworks:
hidden
aspect
of
thermodynamically controlled enolates. J. Org. Chem., 2001,
66(24), 8000-8009.
REFERENCES
[1]
a) Srinivasan, B.; Johnson, T. E.; Lad, R.; Xing, C.
Structureꢀactivity relationship studies of chalcone leading to 3-
hydroxy-4,3ꢁ,4ꢁ,5ꢁ-tetramethoxychalcone and its analogues as
potent nuclear factor ꢂB inhibitors and their anticancer activities. J.
Med. Chem., 2009, 52(22), 7228-7235; b) Baba, M.; Asano, R.;
Takigami, I.; Takahashi, T.; Ohmura, M.; Okada, Y.; Sugimoto, H.;
Arika, T.; Nishino, H.; Okuyama, T. Studies on cancer
chemoprevention by traditional folk medicines XXV. Inhibitory
effect of isoliquiritigenin on azoxymethane-induced murine colon
aberrant crypt focus formation and carcinogenesis. Biol. Pharm.
Bull., 2002, 25(2), 247-250; c) Kim, D. Y.; Kim, K. H.; Kim, N. D.;
Lee, K. Y.; Han, C. K.; Yoon, J. H.; Moon, S. K.; Lee, S. S.; Seong,
B. L. Design and biological evaluation of novel tubulin inhibitors
as antimitotic agents using a pharmacophore binding model with
tubulin. J. Med. Chem., 2006, 49(19), 5664-5670; d) Modzelewska,
A.; Pettit, C.; Achanta, G.; Davidson, N. E.; Huang, P.; Khan, S. R.
Anticancer activities of novel chalcone and bis-chalcone
derivatives. Bioorg. Med. Chem., 2006, 14(10), 3491-3495; e)
Shen, K. H.; Chang, J. K.; Hsu, Y. L.; Kuo, P. L. Chalcone arrests
cell cycle progression and induces apoptosis through induction of
mitochondrial pathway and inhibition of nuclear factor kappa B
signalling in human bladder cancer cells. Basic Clin. Pharmacol.
Toxicol., 2007, 101(4), 254-261; f). Zi, X.; Simoneau, A. R.
Flavokawain A, a novel chalcone from kava extract, induces
apoptosis in bladder cancer cells by involvement of bax protein-
dependent and mitochondria-dependent apoptotic pathway and
suppresses tumor growth in mice. Cancer Res., 2005, 65(8), 3479-
3486.
[8]
[9]
Matsumoto, M.; Kobayashi, H. Hexacyanoferrate-catalyzed
oxidation of trimethoxybenzenes to dimethoxy-p-benzoquinones
with hydrogen peroxide. J. Org. Chem., 1985, 50(10), 1766-1768.
a) Hosomi, A.; Sakurai, H. Synthesis of ꢃ,ꢃ-dimethylallylsilanes, a
reagent of regiospecific prenylation of acetals and carbonyl
compounds. Tetrahedron Lett., 1978, 19(29), 2589-2592; b)
Hosomi, A. and Sakurai, H. Thermische umlagerung von
quadratsäure-bis (trimethylsilyl) ester. Tetrahedron Lett., 1976,
16(15), 1295-1296.
a) Suzuki, I.; Shigenaga, A.; Nemoto, H.; Shibuya, M.
Developments of enediyne model compounds generating biradicals
with an enhanced radical character – regulation of triggering
devices. Heterocycles, 2004, 62, 503-519; b) Stahly, G. P.;
Jackson, A. Synthesis of 2-[(perfluoroalkyl)phenyl]propionic acids.
J. Org. Chem., 1991, 56(18), 5472-5475.
Manda, S.; Nakanishi, I.; Ohkubo, K.; Uto, Y.; Kawashima, T.;
Hori, H.; Fukuhara, K.; Okuda, H.; Ozawa, T.; Ikota, N.;
Fukuzumi, S.; Anzai, K. Enhanced radical-scavenging activity of
naturally-oriented artepillin C derivatives. Chem. Commun., 2008,
626-628.
Fürstner, A.; Thiel, O. R.; Kindler, N.; Bartkowska, B. Total
syntheses of (S)-(ꢀ)-zearalenone and lasiodiplodin reveal superior
metathesis activity of ruthenium carbene complexes with imidazol-
2-ylidene ligands. J. Org. Chem., 2000, 65(23), 7990-7995.
László Kürti and Barbara Czakó. Strategic Applications of Named
Reactions in Organic Synthesis. Elsevier. 2005.
[10]
[11]
[12]
[13]
[14]
Beletskaya, I. P.; Cheprakov, A. V. The heck reaction as a
sharpening stone of palladium catalysis. Chem. Rev., 2000, 100(8),
3009-3066.
[2]
Ahmad, S.; Israf, D. A.; Lajis, N. H.; Shaari, K.; Mohamed, H.;
Wahab, A. A.; Ariffin, K. T.; Hoo, W. Y.; Aziz, N. A.; Kadir, A.
A.; Sulaiman, M. R.; Somchit, M. N. Cardamonin, inhibits pro-