Journal of the American Chemical Society
COMMUNICATION
16, 2155. (c) Alloyeau, D.; Ricolleau, C.; Mottet, C.; Oikawa, T.;
Langlois, C.; Le Bouar, Y.; Braidy, N.; Loiseau, A. Nat. Mater. 2009,
8, 940.
(2) (a) Rajca, A.; Wongsriratanakul, J.; Rajca, S. J. Am. Chem. Soc.
1997, 119, 11674. (b) Ottenwaelder, X.; Cano, J.; Journaux, Y.; Riviꢀere,
E.; Brennan, C.; Nierlich, M.; García, R. R. Angew. Chem., Int. Ed. 2004,
43, 850. (c) Zhang, X.; Ng, M.-F.; Wang, Y.; Wang, J.; Yang, S.-W. ACS
Nano 2009, 3, 2515.
(3) (a) Stephens, P. W.; Cox, D.; Lauher, J. W.; Mihaly, L.; Wiley,
J. B.; Allemand, P.-M.; Hirsch, A.; Holczer, K.; Li, Q.; Thompson, J. D.;
Wudl, F. Nature 1992, 355, 331. (b) Chiarelli, R.; Novak, M. A.; Rassat,
A. Nature 1993, 363, 147. (c) Tanaka, K.; Tengeiji, A.; Kato, T.; Toyama,
N.; Shionoya, M. Science 2003, 299, 1212.
Figure 3. Geometry-optimized molecular models of (a) cyclo- and
(b) cage-[PCu]2⊃La@C82 and their spin ground states, calculated using
DFT at the BLYP level.10
(4) (a) Edelmann, F. T. Angew. Chem., Int. Ed. Engl. 1995, 34, 981.
(b) Shinohara, H. Rep. Prog. Phys. 2000, 63, 843. (c) Wolf, M.; M€uller,
K.-H.; Skourski, Y.; Eckert, D.; Georgi, P.; Krause, M.; Dunsch, L. Angew.
Chem., Int. Ed. 2005, 44, 3306. (d) Zuo, T.; Olmstead, M. M.; Beavers,
C. M.; Balch, A. L.; Wang, G.; Yee, G. T.; Shu, C.; Xu, L.; Ellott, B.;
Echegoyen, L.; Duchamp, J. C.; Dorn, H. C. Inorg. Chem. 2008, 47, 5234.
(e) Ananta, J. S.; Wilson, L. J. . In Chemistry of Nanocarbon; Akasaka, T.,
Wudl, F., Nagase, S., Eds.; Wiley: Chichester, U.K., 2010; pp 239À259.
(5) (a) Johnson, R. D.; de Vries, M.; Yannoni, C. S.; Bethune, D. S.;
Salem, J. R. Nature 1992, 355, 239. (b) Akasaka, T.; Kato, T.; Kobayashi,
K.; Nagase, S.; Yamamoto, K.; Funasaka, H.; Takahashi, T. Nature 1995,
374, 600. (c) Endofullerenes: A New Family of Carbon Cluster; Akasaka,
T., Nagase, S., Eds.; Kluwer: Dordrecht, The Netherlands, 2002.
(6) Tashiro, K.; Aida, T. Chem. Soc. Rev. 2007, 36, 189.
(7) Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.;
Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. 1999, 121, 9477.
(8) Zheng, J.-Y.; Tashiro, K.; Hirabayashi, Y.; Kinbara, K.; Saigo, K.;
Aida, T.; Sakamoto, S.; Yamaguchi, K. Angew. Chem., Int. Ed. 2001,
40, 1857.
(9) (a) Shoji, Y.; Tashiro, K.; Aida, T. J. Am. Chem. Soc. 2004,
126, 6570. (b) Ouchi, A.; Tashiro, K.; Yamaguchi, K.; Tsuchiya, T.;
Akasaka, T.; Aida, T. Angew. Chem., Int. Ed. 2006, 45, 3542.
(10) See the Supporting Information.
a function of spin state was analyzed by DFT calculations using
its optimized geometry (Figure 3a) as the initial state, the quartet
spin state was slightly but definitely more stable than the doublet
spin state (Table S1),10 in conformity with our experimental
result [Figure 2b(ii)]. In contrast, for the optimized structure of
cage-[PCu]2⊃La@C82, the doublet spin state was calculated to
have a lower energy than the quartet spin state (Table S1).10
These theoretical considerations suggest the interesting possibi-
lity that the mode of coupling among the clustering spins can be
changed by altering the cluster geometry.
In summary, through studies of the inclusion complexation of
paramagnetic cyclo-[PCu]2 and cage-[PCu]2 with La@C82, we
have demonstrated that the former compound is the first host
molecule that can be ferromagnetically coupled with paramag-
netic La@C82. Also noteworthy is the result that this ferromag-
netic nature turns ferrimagnetic when cyclo-[PCu]2⊃La@C82 is
transformed into its caged analogue (cage-[PCu]2⊃La@C82). As
shown by DFT calculations, this transformation is likely accompa-
nied by a change in the geometry of the host/guest complex. Thus, a
host molecule with the ability to change its conformaton in response
to physical stimuli might lead to the development of stimuli-
responsive memory devices based on endohedral metallofullerenes.
(11) (a) Sato, K.; Yano, M.; Furuichi, M.; Shiomi, D.; Takui, T.; Abe,
K.; Itoh, K.; Higuchi, A.; Katsuma, K.; Shirota, Y. J. Am. Chem. Soc. 1997,
119, 6607. (b) Ito, A.; Nakano, Y.; Urabe, M.; Kato, T.; Tanaka, K. J. Am.
Chem. Soc. 2006, 128, 2948. (c) Sakamaki, D.; Ito, A.; Furukawa, K.;
Kato, T.; Tanaka, K. Chem. Commun. 2009, 4524.
(12) Kikuchi, K.; Nakahara, N.; Wakabayashi, T.; Suzuki, S.;
Shinomori, H.; Miyake, Y.; Saito, K.; Ikemoto, I.; Kainosho, M.; Achiba,
Y. Nature 1992, 357, 142.
’ ASSOCIATED CONTENT
(13) The optimized model of cyclo-[PCu]2⊃La@C82 adopted a
CuÀLaÀCu angle and CuÀLa distances of 144.5ꢀ and 5.691 and
9.415 Å, respectively, while the corresponding angle and distances in
the model of cage-[PCu]2⊃La@C82 after optimization were 175.1ꢀ and
5.368 and 8.977 Å, respectively.
S
Supporting Information. Synthesis and characterization
b
of cyclo- and cage-[PM]2 and their complexes with La@C82 and
C82. This material is available free of charge via the Internet at
’ AUTHOR INFORMATION
Corresponding Author
TASHIRO.Kentaro@nims.go.jp; aida@macro.t.u-tokyo.ac.jp
’ ACKNOWLEDGMENT
This work was partially supported by a Grant-in-Aid for
Scientific Research on Innovative Areas (20108001, “pi-Space”)
from MEXT, Japan. F.H. thanks the JSPS for a Postdoctoral
Fellowship for Foreign Researchers.
’ REFERENCES
(1) (a) Albrecht, T. T.; Schotter, J.; K€astle, G. A.; Emley, N.;
Shibauchi, T.; Elbaum, L. K.; Guarini, K.; Black, C. T.; Tuominen,
M. T.; Russell, T. P. Science 2000, 290, 2126. (b) Zhu, F. Q.; Fan, D.;
Zhu, X.; Zhu, J.-G.; Cammarata, R. C.; Chien, C.-L. Adv. Mater. 2004,
9292
dx.doi.org/10.1021/ja203491s |J. Am. Chem. Soc. 2011, 133, 9290–9292