F. Pina et al.
was allowed to reflux for 10 h and then concentrated by distillation. The
crude was dissolved in methanol and an orange precipitate was obtained
by adding ethyl ether. The solid was filtered off, washed with diethyl
ether and dried, yielding 1,1’-di[(acetophenone-4-il)methyl]-4,4’-bipyridi-
nium bromide (1.114 g, 1.91 mmol, 95.7%). 1H NMR (CD3OD,
PTDC/QUI/67786/2006 and PTDC/QUI-QUI/104129/2008 and grants
SFRH/BD/48226/2008 (A.D.) and SFRH/BPD/18214/2004 (V.P.).
3
[1] T. Swain in The Flavonoids (Eds.: J. B. Harborne, T. J. Mabry, H.
Mabry), Chapman and Hall, London, 1975, p. 1129.
[2] Anthocyanins as Food Colors (Ed.: P. Markakis), Academic Press,
New York, 1982.
[5] F. Pina, M. Maestri, V. Balzani in Handbook of Photochemistry and
Photobiology, Vol. 3, American Scientific Publishers, Stevenson,
2003, Chapter 9, pp. 411–449.
400.13 MHz): d=9.36 (d, 4H, JH2’,H6’,H2,H6–H3’,H5’,H3,H5 =6.6 Hz; H2’, H6’, H2,
H6), 8.70 (d, 4H, 3JH3’,H5’,H2,H5–H2’,H6’,H2,H6 =6.5 Hz; H3’, H5’, H3, H5), 8.09 (d,
4H, 3JH9’,H13’,H9,H13–H10’,H12’,H10,H12 =8.2 Hz; H9’, H13’, H9, H13), 7.67 (d, 4H,
3JH10’,H12’,H10,H12–H9’,H13’,H9,H13 =6.6 Hz; H10’, H12’, H10, H12), 6.05 (s, 4H; N-
CH2), 2.60 ppm (s, 6H; COCH3); 13C NMR (CD3OD; 400.13 MHz): d=
151.86 (C4, C4’), 147.37 (C2, C6, C2’, C6’), 139.56 (C8, C8’), 139.04 (C11, C11’),
130.58 (C9, C13, C9’, C13’), 130.45 (C10, C12, C10’, C12’), 128.73 (C3, C5, C3’,
C5’), 65.26 (CNꢁCH2), 26.79 ppm (CCH3); MS-MALDI/TOF+: m/z: calcd
(%) for C28H26N2O2+: 422.20 (100); found: 289.5 [MꢁC9H9O]+ (100);
421.6 [MꢁH]+ (73); 423.5 [M+H]+ (13); elemental analysis calcd (%)
[6] F. Pina, M. J. Melo, A. J. Parola, M. Maestri, V. Balzani, Chem. Eur.
.
for C28H26Br2N2O2 H2O: C 56.02, H 4.70, N 4.67; found: C 56.60, H 4.64,
[7] M. J. Melo, F. Pina, C. Andary, Anthocyanins, Natureꢀs Glamorous
Palette in Handbook of Natural Colorants (Eds.: T. Bechtold, R.
Mussak), Wiley, 2009, pp. 135–150.
[8] M. J. Melo, A. J. Parola, J. C. Lima, F. Pina, Chromogenic Materials
Based on 2-Phenyl-1-benzopyrylium: From Anthocyanins to Synthet-
ic Flavylium Compounds in Chromic Materials, Phenomena and
their Technological Applications (Ed.: P. R. Somani), RSC, London,
2010, Chapter 16, pp. 537–576.
[9] F. Pina, J. C. Lima, A. J. Parola, C. A. M. Afonso, Angew. Chem.
[10] L. Giestas, F. Folgosa, JC Lima, A. J. Parola, F. Pina, Eur. J. Org.
[11] M. C. Moncada, D. Fernandꢄz, J. C. Lima, A. J. Parola, C. Lodeiro,
[12] A. Roque, C. Lodeiro, F. Pina, M. Maestri, S. Dumas, P. Passaniti, J.
[13] A. Roque, C. Lodeiro, F. Pina, M. Maestri, R. Ballardini, V. Balzani,
[14] R. Robinson, D. D. Pratt, J. Chem. Soc. 1922, 1577–1585.
[17] F. Galindo, J. C. Lima, S. V. Luis, A. J. Parola, F. Pina, Adv. Funct.
[19] J. T. Edsall, J. Wyman, Biophysical Chemistry, Vol. 1, Academic
Press, New York, 1958.
[20] A. Bencini, M. A. Bernardo, A. Bianchi, M. Ciampolini, V. Fusi,
[21] K. A. Conners, Chemical Kinetics The Study of Reaction Rates in So-
lution, VCH, Weinheim, Chapter III, 1990.
[24] N. Cotelle, P. Hapiot, J. Pinson, C. Rolando, H. Vꢄzin, J. Phys.
[25] F. W. Kꢅster, A. Thiel, Tabelle per le Analisi Chimiche e Chimico-Fi-
siche, 12nd ed., Hoepli, Milano, 1982, pp. 157–160.
[26] C. G. Hatchard, C. A. Parker, Proc. R. Soc. London Ser. A 1956,
235, 518–536.
N 4.82.
1,1’-Di[(7-hydroxyflavylium-4’-il)methyl]-4,4’-bipyridinium
(3): 1,1’-Di[(acetophenone-4-il)methyl]-4,4’-bipyridinium
perchlorate
bromide
(0.2 mmol; 0.116 g) and 2,4-dihydroxybenzaldehyde (0.2 mmol; 0.027 g)
were dissolved in glacial acetic acid (4 mL). Sulfuric acid (1.2 mL) was
added and the resulting mixture was allow to stir overnight. A reddish
solid was obtained by treating the solution with H2O and perchloric acid.
The solid was filtered off, washed with ethyl acetate, and dried, yielding
1,1’-di[(7-hydroxyflavylium-4’-il)methyl]-4,4’-bipyridinium
perclorate
(0.123 g, 0.12 mmol, 59.8%). 1H NMR (DCl/CD3OD, pDꢃ1.0,
3
400.13 MHz): d=9.47 (d, 4H, JH2’,H6’,H2,H6–H3’,H5’,H3,H5 =6.6 Hz; H2’, H6’, H2,
H6), 9.39 (d, 2H, 3JH4f–H3f =8.3 Hz; H4f), 8.78 (d, 4H, JH3’,H5’,H3,H5–
3
H2’,H6’,H2,H6 =6.6 Hz; H3’, H5’, H3, H5), 8.59 (d, 4H, 3JH3’f,H5f’–H2’f,H6’f =8.6 Hz;
H3’f, H5’f), 8.58 (d, 2H, 3JH3f–H4f =8.6 Hz; H3f), 8.33 (d, 2H, JH5f–H6f
=
3
9.0 Hz; H5f), 7.96 (d, 4H, 3JH2’f,H6f’–H3’f,H5’f =8.2 Hz; H2’f, H6’f), 7.67 (s, 2H;
H8f), 7.55 (d, 2H, 3JH6f–H5f =9.0, 4JH6f–H8f =2.2 Hz; H6f), 6.23 ppm (s, 4H;
N CH2); MS-MALDI/TOF+: m/z: calcd (%) for C42H32N2O4+: 628.24
ꢁ
(100); found: 627.7 [MꢁH]+ (32.8); 391.7 [MꢁC16H13O2
]
(25); 235.6
+
+
3+
+
[MꢁC26H20N2O2
]
(100); elemental analysis calcd (%) for
C42H32Cl4N2O20·3H2O: C 46.68, H 3.54, N 2.59; found: C 46.48, H 3.13, N
2.70.
7-Hydroxy-4’-methylflavylium tetrafluorborate (4): 7-Hydroxy-4’methyl-
flavylium tetrafluorborate was prepared according to a procedure adapt-
ed from Katritzky. 2,4-Dihydroxybenzaldehyde (10 mmol, 1.38 g) and 4-
methylacetophenone (10 mmol, 1.34 g) were dissolved in acetic acid
(10 mL) and HBF4 (2 mL). Acetic anhydride (10 mL) was then added
dropwise and the temperature of the reaction raised. The reaction mix-
ture was stirred overnight. By the following day diethyl ether and ethyl
acetate were added and the orange solid precipitated was filtered off and
carefully washed with diethyl ether and dried yielding 7-hydroxy-4’meth-
ylflavylium tetrafluorborate (0.57 g, 1.78 mmol, 18%). 1H NMR
3
(CD3OD, 400.13 MHz): d=9.27 (d, 1H, JH4,H3 =8.5 Hz; H4), 8.48 (d, 1H,
3JH3,H4 =8.5 Hz; H4), 8.39 (d, 2H, JH2’,H6’–H3’,H5’ =8.3 Hz; H2’6’), 8.25 (d, 1H,
3
3JH5,H6 =9.0 Hz; H5), 7.62 (d, 1H, 4JH8,H6 =1.6 Hz; H8), 7.56 (d, 2H,
3JH3’,H5’– H2’,H6’ =8.2 Hz; H3’5), 7.49 ppm (d, 1H, JH6,H5 =9.0, JH6,H8 =2.0 Hz;
H6); 13C NMR (CD3OD; 400.13 MHz): d=173.55 (C2), 171.36 (C7),
161.15 (C8a), 156.21 (C4), 149.75 (C4’), 134.44 (C5), 132.05 (C3’, C5’),
3
3
130.61
ACHTUNGTRENNUNG(C2’, C6’), 127.81 (C1), 123.46 (C6), 121.29 (C4a), 114.07 (C3), 103.74
(C8), 22.13 ppm (CCH3).
Acknowledgements
[27] N. Leventis, C. Sotiriou-Leventis, A. M. M. Rawashdeh, G. Zhang,
We thank J. C. Lima and C. A. T. Laia for fruitful discussions and
LabRMN at FCT-UNL and Rede Nacional de RMN (supported with
funds from FCT-MCTES, Portugal) for access to the facilities. FCT-
MCTES is also acknowledged for financial support through projects
[28] See the Supporting Information for numeration of hydrogen and
carbon atoms.
Received: December 24, 2010
Published online: April 19, 2011
6368
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2011, 17, 6359 – 6368