ORGANIC
LETTERS
2011
Vol. 13, No. 13
3289–3291
EnoneÀAlkyne Reductive Coupling: A
Versatile Entry to Substituted Pyrroles
Benjamin B. Thompson and John Montgomery*
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann
Arbor, Michigan 48109-1055, United States
Received April 28, 2011
ABSTRACT
The reductive coupling of enones or enals with alkynes, followed by olefin oxidative cleavage and PaalÀKnorr cyclization, provides a versatile
entry to a variety of pyrrole frameworks. A number of limitations of alternate entries to the requisite 1,4-dicarbonyl intermediate are avoided.
Classes of pyrroles that are accessible by this approach include 2,3-, 2,4-, 1,2,3-, 1,2,4-, 2,3,5-, and 1,2,3,5-substituted monocyclic pyrroles as well
as a number of fused-ring polycyclic derivatives.
The pyrrole heterocycle is a key structural element in
numerous natural products, synthetic medicinal agents,
and novel materials.1 In addition to strategies that func-
tionalize an existing pyrrole ring, numerous cyclization
and cycloaddition strategies for constructing complex
pyrroles have been developed.1,2 The PaalÀKnorr con-
densation of 1,4-dicarbonyls with ammonia or primary
amines is among the most versatile and widely used of the
many strategies that have been developed.3 The requisite
1,4-dicarbonyl precursor may be prepared from a linear
precursor by oxidation state adjustments or alterna-
tively, attractive entries via Stetter additions4 or enolate
heterodimerizations5 have been developed in recent years
(Scheme 1). While Stetter reactions and enolate hetero-
dimerizations provide exceptionally versatile entries to 1,
4-dicarbonyls, several notable limitations exist. For exam-
ple, given the undesirable side reactions and self-condensa-
tions that occur with enals and formaldehyde in the Stetter
reaction, aldehyde products are difficult to obtain, thus
limiting access to pyrroles where R2 or R5 = H.6 Similarly,
enolate heterodimerizations that install hydrogen func-
tionality at these positions are plagued by difficulties in
avoiding homocoupling and in developing well-behaved
aldehyde enolization processes.7 Additionally, certain
classes of polycyclic pyrroles are difficult to access by
these methods given complexities in accessing the required
1,4-dicarbonyl substrates.
(1) (a) Fan, H.; Peng, J. N.; Hamann, M. T.; Hu, J. F. Chem. Rev.
2010, 110, 3850–3850. (b) Estevez, V.; Villacampa, M.; Menendez, J. C.
Chem. Soc. Rev. 2010, 39, 4402–4421. (c) Schmuck, C.; Rupprecht, D.
Synthesis 2007, 3095–3110. (d) Bellina, F.; Rossi, R. Tetrahedron 2006,
62, 7213–7256.
(2) (a) St. Cyr, D. J.; Arndtsen, B. A. J. Am. Chem. Soc. 2007, 129,
12366–12367. (b) Morin, M. S. T.; St-Cyr, D. J.; Arndtsen, B. A. Org.
Lett. 2010, 12, 4916–4919. (c) Boger, D. L.; Boyce, C. W.; Labroli, M. A.;
Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54–62. (d) Kel’in,
A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123,
2074–2075. (e) Lee, C. F.; Yang, L. M.; Hwu, T. Y.; Feng, A. S.; Tseng,
J. C.; Luh, T. Y. J. Am. Chem. Soc. 2000, 122, 4992–4993. (f) Milgram,
B. C.; Eskildsen, K.; Richter, S. M.; Scheidt, W. R.; Scheidt, K. A. J.
Org. Chem. 2007, 72, 3941–3944. (g) Galliford, C. V.; Scheidt, K. A. J.
Org. Chem. 2007, 72, 1811–1813.
(3) (a) Knorr, L Ber. 1884, 17, 2863–2870. (b) Paal, C. Ber. 1884, 17,
2756–2767. (c) Braun, R. U.; Zeitler, K.; Muller, T. J. J. Org. Lett. 2001,
3, 3297–3300. (d) Braun, R. U.; Muller, T. J. Synthesis 2004, 2391–2406.
(e) Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465–2468. (f)
Werner, S.; Iyer, P. S.; Fodor, M. D.; Coleman, C. M.; Twining, L. A.;
Mitasev, B.; Brummond, K. M. J. Comb. Chem. 2006, 8, 368–380. (g)
Minetto, G.; Raveglia, L. F.; Sega, A.; Taddei, M. Eur. J. Org. Chem.
2005, 5277–5288.
(5) (a) Baran, P. S.; DeMartino, M. P. Angew. Chem., Int. Ed. 2006,
45, 7083–7086. (b) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am.
Chem. Soc. 2008, 130, 11546–11560. (c) Clift, M. D.; Thomson, R. J. J.
Am. Chem. Soc. 2009, 131, 14579–14583. (d) Clift, M. D.; Taylor, C. N.;
Thomson, R. J. Org. Lett. 2007, 9, 4667–4669.
(6) For alternate reactivity of enals under Stetter-type conditions,
see: (a) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004,
126, 14370–14371. (b) Burstein, C.; Tschan, S.; Xie, X. L.; Glorius, F.
Synthesis 2006, 2418–2439.
(7) For effective heterodimerizations involving aldehyde substrates,
see: Jang, H. Y.; Hong, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc.
2007, 129, 7004–7005.
(4) (a) Stetter, H. Angew. Chem., Int. Ed. Engl. 1976, 15, 639–647. (b)
Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606–5655.
(c) de Alaniz, J. R.; Rovis, T. Synlett 2009, 1189–1207. (d) Nahm, M. R.;
Linghu, X.; Potnick, J. R.; Yates, C. M.; White, P. S.; Johnson, J. S.
Angew. Chem., Int. Ed. 2005, 44, 2377–2379. (e) Nahm, M. R.; Potnick,
J. R.; White, P. S.; Johnson, J. S. J. Am. Chem. Soc. 2006, 128, 2751–
2756.
r
10.1021/ol201133n
2011 American Chemical Society
Published on Web 06/09/2011