ORGANIC
LETTERS
2011
Vol. 13, No. 13
3324–3327
Atom-Economical
Chemoselective Synthesis of 1,4-Diynes
and Polysubstituted Furans/Pyrroles
from Propargyl Alcohols and
Terminal Alkynes
Tao Wang, Xin-liang Chen, Li Chen, and Zhuang-ping Zhan*
Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, Fujian, P. R. China
Received April 20, 2011
ABSTRACT
Under different conditions, the reaction of propargyl alcohols and terminal alkynes leads to the selective formation of 1,4-diynes and
polysubstituted furans/pyrroles. Water is the only byproduct in the selective synthesis of 1,4-diynes and pyrroles, and the strategy for the
furan synthesis is of 100% atom economy.
In modern organic chemistry, a key but challenging goal
must be maximizing synthetic efficiency in the transformation
of starting materials to the target molecules. Readily available
starting materials, high selectivity, and atom economy are
three attractive features of efficient synthetic methods.1
Although considerable progress has been made, many
reactions still suffer from low efficiency. For instance, 1,
4-diynes are traditionally accessed by the nucleophilic sub-
stitution of propargyl halides or sulfonates with metal
acetylides. Thus, large amounts of salt waste are gener-
ated simultaneously.2 Recently, the coupling of propargyl
alcohols and alkynylsilanes has emerged as an attractive
alternative.3 However, in this protocol, a stoichiometric
amount of trimethylsilanol is formed as a byproduct.
Among the numerous approaches to polysubstituted fur-
ans and pyrroles, cycloisomerizations of alkynyl- and allenyl-
functionalized compounds are particularly attractive.4
(4) For representative examples on furan syntheses, see: (a) Kang,
J. Y.; Connell, B. T. J. Org. Chem. 2011, 76, 2379. (b) Chen, Z; Huang, G.;
Jiang, H.; Huang, H.; Pan, X. J. Org. Chem. 2011, 76, 1134. (c) Albrecht,
L.; Ransborg, L. K.; Gschwend, B.; Jorgensen, K. A. J. Am. Chem. Soc.
2010, 132, 17886. (d) Zhang, X.; Lu, Z.; Fu, C.; Ma, S. J. Org. Chem. 2010,
75, 2589. (e) Kao, T.-T.; Syu, S.-e.; Jhang, Y.-W.; Lin, W. Org. Lett. 2010,
12, 3066. (f) Li, W.; Zhang, J. Chem. Commun. 2011, 47, 809. For
representative examples on pyrrole syntheses, see: (g) Trost, B. M.; Lumb,
J.-P.; Azzarelli, J. M. J. Am. Chem. Soc. 2011, 133, 740. (h) Wang, Y.; Bi,
X.; Li, D.; Liao, P.; Wang, Y.; Yang, J.; Zhang, Q.; Liu, Q. Chem.
Commun. 2011, 47, 809. (i) Ngwerume, S.; Camp, J. E. Chem. Commun.
2011, 47, 1857. (j) Kramer, S.; Madsen, J. L. H.; Rottlander, M.;
Skrydstrup, T. Org. Lett. 2010, 12, 2758. (k) Donohoe, T. J.; Race,
N. J.; Bower, J. F.; Callens, C. K. A. Org. Lett. 2010, 12, 4094. (l) Saito,
A.; Konishi, T.; Hanzawa, Y. Org. Lett. 2010, 12, 372. (m) Yan, R.-L.;
Luo, J.; Wang, C.-X.; Ma, C.-W.; Huang, G.-S.; Liang, Y.-M. J. Org.
Chem. 2010, 75, 5395.
(1) Trost, B. M. Science 1991, 254, 1471.
ꢀ
(2) (a) Ege, S. N.; Wolovsky, R.; Gensler, W. J. J. Am. Chem. Soc.
1961, 83, 3080. (b) Taniguchi, H.; Mathai, I.; Miller, S. I. Org. Synth.
1970, 50, 97. (c) Normant, J. F. Synthesis 1992, 63. (d) Spinella, A.;
Caruso, T.; Martino, M.; Sessa, C. Synlett 2001, 1971. (e) Gardes-
ꢁ
Gariglio, H.; Pornet, J. J. Organomet. Chem. 2001, 620, 94. (f) Caruso,
T.; Spinella, A. Tetrahedron 2003, 59, 7787. (g) Qi, L.; Meijler, M. M.;
Lee, S.-H.; Sun, C.; Janda, K. D. Org. Lett. 2004, 6, 1673. (h) Montel, F.;
Beaudegnies, R.; Kessabi, J.; Martin, B.; Muller, E.; Wendeborn, S.;
Jung, P. M. J. Org. Lett. 2006, 8, 1905. (i) Kessabi, J.; Beaudegnies, R.;
Jung, P. M. J; Martin, B.; Montel, F.; Wendeborn, S. Org. Lett. 2006, 8,
5629.
(3) (a) Kuninobu, Y.; Ishii, E.; Takai, K. Angew. Chem., Int. Ed.
2007, 46, 3296. (b) Yadav, J. S.; Reddy, B. V. S.; Thrimurtulu, N.;
Reddy, N. M.; Prasad, A. R. Tetrahedron Lett. 2008, 49, 2031. (c) Wang,
T.; Ma, R.; Liu, L.; Zhan, Z. Green Chem. 2010, 2, 1576.
r
10.1021/ol201054z
Published on Web 06/07/2011
2011 American Chemical Society