The Journal of Physical Chemistry B
ARTICLE
The compounds were dissolved in o-dichlorobenzene and
cast onto quartz substrate at 0.6ꢀ2.1 μm thick determined by
Dektak150 surface profiler. The films were heated up to 200 °C
under an Ar atmosphere and annealed at the temperature for
30minbeforethemeasurement. Thenumberofphotons absorbed
by the film is estimated by the direct measurement of transmitted
power of laser pulses Opher NOVA-display power meter.
’ REFERENCES
(1) Recent reviews:(a) Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem.
Res. 2001, 34, 359. (b) Takimiya, K.; Kunugi, Y.; Otsubo, T. Chem. Lett.
2007, 36, 578. (c) Murphy, A. R.; Frꢀechet, J. M. J. Chem. Rev. 2007,
107, 1066. (d) Ong, B. S.; Wu, Y.; Li, Y.; Liu, P.; Pan, H. Chem.—Eur.
J. 2008, 14, 4766. (e) Allard, S.; Forster, M.; Souharce, B.; Thiem, H.;
Schert, U. Angew. Chem., Int. Ed. 2008, 120, 4138. (f) Chen, J.; Cao, A. Y.
Acc. Chem. Res. 2009, 42, 1709.
Time-of-Flight Mearsurement. The compounds 1 and 2
were overcoated onto an Al electrode from o-dichlorobenzene
solutions at 8.0 and 4.2 μm thick, respectively. The films were
annealed at 200 °C for 3 h under high vacuum. The film was sub-
sequently overcoated by an Au semitransparent electrode. The
measurement was carried out in an environmental chamber at
273 K, > 10ꢀ4 Pa. The nanosecond laser pulses from a Nd: YAG
laser (third harmonic generation, THG (355 nm) from Spectra
Physics, Quanta-Ray (fwhm 5ꢀ8 ns) have been used as excita-
tion sources. The power density of the laser was set at 2.0 ꢁ 1015
photons cmꢀ2. Current transients were recorded through a
terminate resistance of 3 kΩ by a Tektronic TDS 3052B digitizing
oscilloscope. The bias voltage was applied to the top electrode by
an ADVANTEST R8252 power source. Photogenerated charge
carriers are estimated by an integration of the current transient,
with simultaneous accumulation by a Keithley R6487 current
integrator. The other set of apparatus is described in elsewhere.16
FET Measurement. FET devices based on 1 and 2 as the
semiconductors were fabricated with top contact configuration
on silicon wafer in inert conditions. A heavily n-doped silicon
wafer with a 300-nm thermal silicon dioxide (SiO2) was used as
the substrate/gate electrode, with the top SiO2 layer serving as
the gate dielectric. Two types of wafer were prepared; one was
employed without any special pretreatments and the other
was immersed in a solution of octadecyltrichlorosilane (ODTS,
200 μdm3) in octane (50 mdm3) overnight prior to fabrication.
The active layers were deposited on top of SiO2 surface by spin-
coating a solution of 1 or 2 in toluene (0.5 wt %). Subsequently,
some wafers were annealed at 60 °C for 30 min. MoO3 (15 nm)
and Au (50 nm) were sequentially deposited by vacuum evapora-
tion through a shadow mask to create a source/drain pair. The
channel width (W) and length (L) were 2000 μm and 20 (or 50)
μm, respectively. The field-effectmobility (μ) was calculated inthe
saturation region at the Vd of ꢀ60 V using the following equation:
Id = μCi(VgꢀVth)2, where Ci is the capacitance of SiO2, and Vg
and Vth are gate voltage and threshold voltage, respectively.
(2) For a recent example of β,β0-dialkylthiophene derivatives with
high charge carrier mobility and conductivity:(a) Prasanthkumar, S.;
Saeki, A.; Seki, S.; Ajyayaghosh, A. J. Am. Chem. Soc. 2010, 132, 8866. (b)
Prasanthkumar, S.; Gopal, A.; Ajayaghosh, A. J. Am. Chem. Soc. 2010,
132, 13206.
(3) (a) Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G.
Chem. Mater. 2006, 18, 3237. (b) Pan, H.; Wu, Y.; Li, Y.; Liu, P.; Ong,
B. S.; Zhu, S.; Xu, G. Adv. Funct. Mater. 2007, 17, 3574.
(4) Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. J. Am.
Chem. Soc. 2007, 129, 4112.
(5) (a) Higa, T.; Krubsack, A. J. J. Org. Chem. 1975, 40, 3037. (b)
Ried, W.; Oremek, G.; Ocakcioglu, B. Liebigs Ann. Chem. 1980, 1424. (c)
Maleꢁseviꢀc, M.; Karminsky-Zamola, G.; Bajiꢀc, M.; Boykin, D. W. Hetero-
cycles 1995, 41, 2691.
(6) Gelman, D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2003, 42, 5993.
(7) (a) Yamamoto, T.; Komarudin, D.;Arai, M.;Lee, B. L.; Suganuma,
H.; Asakawa, N.; Inoue, Y.; Kubota, K.; Sasaki, S.; Fukuda, T.; Matsuda, H.
J. Am. Chem. Soc. 1998, 120, 2047. (b) Ong, B. S.; Wu, Y.; Liu, P.; Gardner,
S. J. Am. Chem. Soc. 2004, 126, 3378. (c) Wu, Y.; Liu, P.; Gardner, S.; Ong,
B. S. Chem. Mater. 2005, 17, 221.
(8) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.;
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson,
G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski,
V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui,
Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.;
Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and
Pople, J. A. Gaussian 03; Gaussian, Inc., Wallingford CT, 2004.
(9) Saeki, A.; Seki, S.; Tagawa, S. J. Appl. Phys. 2006, 100, 023703.
(10) Microwave measurement of mobility with ESR method:
Marumoto, K.; Arai, N.; Goto, H.; Kijima, M.; Murakami, K.; Tominari,
Y.; Takeya, J.; Shimoi, Y.; Tanaka, H.; Kuroda, S.; Kaji, T.; Nishikawa, T.;
Takenobu, T.; Iwasa, Y. Phys. Rev. B 2011, 83, 075302–1.
(11) Funston, A. M.; Silverman, E. E.; Miller, J. R.; Schanze, K. S.
J. Phys. Chem. B 2004, 108, 1544.
’ ASSOCIATED CONTENT
S
Supporting Information. Preparation of compound 10,
b
detailed characterization data of compounds 6ꢀ11, and XRD
patterns of some devices based on 1 and 2. This material is
(12) (a) Levin, E. I.; Shklovskii, B. I. Solid State Commun. 1988,
67, 233. (b) Kunimi, Y.; Seki, S.; Tagawa, S. Solid State Commun. 2000,
114, 469.
(13) See Supporting Information for our preliminary studies on the
molecular orientation and intermolecular interaction by the X-ray
diffraction (XRD) measurements.
(14) (a) Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem.,
Int. Ed. 2008, 47, 4019. (b) Horita, A.; Tsurugi, H.; Funayama, A.; Satoh,
T.; Miura, M. Org. Lett. 2007, 9, 2231.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: seki@chem.eng.osaka-u.ac.jp; miura@chem.eng.osaka-u.ac.jp.
(15) Pelter, A.; Jenkins, I.; Jones, D. E. Tetrahedron 1997, 53, 10357.
(16) (a) Seki, S.; Yoshida, Y.; Tagawa, S.; Asai, K.; Ishigure, K.;
Furukawa, K.; Fujiki, M.; Matsumoto, N. Phil. Mag. B 1999, 79, 1631.
(b) Acharya, A.; Seki, S.; Koizumi, Y.; Saeki, A.; Tagawa, S. J. Phys. Chem.
B 2005, 109, 20174.
’ ACKNOWLEDGMENT
This work was supported, in part, by Grants-in-Aid from the
Ministry of Education, Culture, Sports, Science, and Technology,
Japan, and by the cooperative research with Sumitomo Chemical
Co., Ltd.
8452
dx.doi.org/10.1021/jp2036668 |J. Phys. Chem. B 2011, 115, 8446–8452