ORGANIC
LETTERS
2011
Vol. 13, No. 13
3418–3421
β-Olefination of 2-Alkynoates Leading to
Trisubstituted 1,3-Dienes
Mathias J. Jacobsen, Erik Daa Funder, Jacob R. Cramer, and Kurt V. Gothelf*
Danish National Research Foundation: Centre for DNA Nanotechnology (CDNA) and
Sino-Danish Centre for Molecular Assembly on Surfaces at Department of Chemistry
and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
Received May 2, 2011
ABSTRACT
A phosphine-mediated olefination of 2-alkynoates with aldehydes forming 1,3-dienes with high E-selectivity and up to 88% yield is described.
Reaction conditions are optimized and reactions are demonstrated for various aryl, alkyl, and alkenyl aldehydes and for ethyl 2-alkynoates with
different substituents in the δ-position. Proof of concept is shown for the generation of a β,γ-unsaturated lactone by intramolecular olefination,
and furthermore the use of the generated 1,3-dienes in the DielsꢀAlder reaction has been demonstrated.
Conjugated dienes are abundant in a wide range of
natural products,1 and furthermore dienes constitute im-
portant scaffolds in the construction of complex organic
molecules.2 Preparation of 1,3-dienes can be facilitated e.g.
by Wittig reactions,3 the Julia olefination,4 transition-
metal-catalyzed cross-coupling reactions,5 and the enyne
metathesis reactions.6 In 1992, Trost reported the isomer-
ization of 2-alkynoates into R,β,γ,δ-dienes by a catalytic
amount of triphenylphospine.7 The proposed mechanism8
for this transformation is initiated by a nucleophilic attack
of phosphine on the β-carbon of the alkynoate. By a series
of proton transfer reactions and phosphine elimination,
the substrate is subsequently converted into a 1,3-diene
with a phoshonium ylide as a key intermediate.
Phosphine-mediated reactions of 2-allenoates lead-
ing to e.g. γ-substituted R,β-unsaturated esters and
5-membered carbo- and heterocycles have been inves-
tigated extensively.9
Recently, Xu et al. and others have reported novel
syntheses of 1,3-dienes by highly E-selective olefination
of electron-deficient allenes withaldehydes in high yields.10
However, allenes are relatively unstable and less readily
available compounds.
Here we report on a new approach where ethyl 2-al-
kynoates are employed as reactants for olefination
reactions instead of the corresponding allenes. Alkynes
serve as versatile building blocks for a wide range of
useful synthetic transformations.11 In the past decades
(1) (a) DellaGreca, M.; Marino, C. D.; Zarrelli, A.; D’Abrosca, B. J.
Nat. Prod. 2004, 67, 1492–1495. (b) Roth, G. N.; Chandra, A.; Nair,
M. G. J. Nat. Prod. 1998, 61, 542–545. (c) Trisuwan, K.; Rukachaisirikul,
V.; Sukpondma, Y.; Preedanon, S.; Phongpaichit, S.; Rungjindamai, N.;
Sakayaroj, J. J. Nat. Prod. 2008, 71, 1323–1326.
(2) (a) Deagostino, A.; Prandi, C.; Zavattaro, C.; Venturello, P. Eur.
J. Org. Chem. 2006, 2463–2483. (b) Takeuchi, D.; Osakada, K. Polymer
2008, 49, 4911–4924.
(3) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927.
(4) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563–2585.
(5) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed.
2005, 44, 4442–4489.
(9) For representative reviews, see: (a) Lu, X.; Zhang, C.; Xu, Z. Acc.
Chem. Res. 2001, 34, 535–544. (b) Nair, V.; Menon, R. S.; Sreekanth,
A. R.; Abhilash, N.; Biju, A. T. Acc. Chem. Res. 2006, 39, 520–530. (c)
Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140–1152. (d)
Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035–1050.
(10) (a) Xu, S.; Zhou, L.; Zeng, S.; Ma, R.; Wang, Z.; He, Z. Org.
Lett. 2009, 11, 3498–3501. (b) Xu, S.; Zou, W.; Wu, G.; Song, H.; He, Z.
Org. Lett. 2010, 12, 3556–3559. (c) Ma, R.; Xu, S.; Tang, X.; Wu, G.; He,
Z. Tetrahedron 2011, 67, 1053–1061. (d) Khong, S. N.; Tran, Y. S.;
Kwon, O. Tetrahedron 2010, 66, 4760–4768. (e) He, Z.; Tang, X.; He, Z.
Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 1518–1525.
(6) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317–1382.
(7) Trost, B. M.; Kazmaier, U. J. Am. Chem. Soc. 1992, 114,
7933–7935. For a review on the phosphine-catalyzed isomerization, see:
Kwong, C. K.-W.; Fu, M. Y.; Lam, C. S.-L.; Toy, P. H. Synthesis 2008,
2307–2317.
(11) For representative reviews, see: (a) Doucet, H.; Hierso, J.-C.
Angew. Chem., Int. Ed. 2007, 46, 843–871. (b) Hein, J. E.; Fokin, V. V.
ꢀ
ꢀ~
Chem. Soc. Rev. 2010, 39, 1302–1315. (c) Jimenez-Nunez, E.; Echavarren,
A. M. Chem. Commun. 2007, 333–346. (d) Severin, R.; Doye, S. Chem. Soc.
Rev. 2007, 36, 1407–1420. (e) Hintermann, L.; Labonne, A. Synthesis 2007,
1121–1150.
(8) Rychnovsky, S. D.; Kim, J. J. Org. Chem. 1994, 59, 2659–2660.
r
10.1021/ol2011677
Published on Web 06/07/2011
2011 American Chemical Society