intrinsic as well as extrinsic chromophores and the probe
quenching in folded proteins. With the bright Atpt fluorescence,
such studies may be potentially expanded to single-molecule
work. Differences in overlap of the Atpt emission with absorption
spectra of reduced and oxidized hemes afford new applications
of fluorescently-labeled proteins for probing heme redox
reactions.
We thank Dr Jay R. Winkler for recognizing the potential
of Ant derivatives in protein folding research and Professor
Tina Izard for the gift of vinculin D1 plasmid. This study was
supported by
(E.V.P).
a NSF CAREER Award, CHE-0953693
Notes and references
1 A. A. Ensign, I. Jo, I. Yildirim, T. D. Krauss and K. L. Bren, Proc.
Natl. Acad. Sci. U. S. A., 2008, 105, 10779–10784.
2 J. W. Taraska, M. C. Puljung and W. N. Zagotta, Proc. Natl.
Acad. Sci. U. S. A., 2009, 106, 16227–16232.
3+
3 D. S. Kudryashov and E. Reisler, Biophys. J., 2003, 85, 2466–2475.
4 E. V. Pletneva, H. B. Gray and J. R. Winkler, J. Mol. Biol., 2005,
345, 855–867.
5 C. A. Southern, D. H. Levy, G. M. Florio, A. Longarte and
T. S. Zwier, J. Phys. Chem. A, 2003, 107, 4032–4040.
6 A. Leskovar and J. Reinstein, Arch. Biochem. Biophys., 2008, 473,
16–24.
Fig. 3 Kinetics of cyt c oxidation by 0.73 mM Co(phen)3
in a
50mM sodium phosphate buffer at pH 7.0 monitored by (a) Atpt66
fluorescence (kbim = 1.1 Â 103
M
À1sÀ1) and (b) heme absorption
(kbim = 1.0 Â 103
M
À1sÀ1) changes. Inset: steady-state fluorescence
spectra for folded ferrous (solid line) and ferric (dashed line) Atpt66-cyt c.
7 J. Ø. Duus, M. Meldal and J. R. Winkler, J. Phys. Chem. B, 1998,
102, 6413–6418.
8 A. R. Mezo, R. P. Cheng and B. Imperiali, J. Am. Chem. Soc.,
2001, 123, 3885–3891.
9 N. Hagag, E. R. Birnbaum and D. W. Darnall, Biochemistry, 1983,
22, 2420–2427.
10 D. J. Pouchnik, L. E. Laverman, F. Janiak-Spens, D. M. Jameson,
G. D. Reinhart and C. R. Cremo, Anal. Biochem., 1996, 235,
26–35.
11 G. S. Reddy, H.-Y. Chen and I.-J. Chang, J. Chin. Chem. Soc.,
2006, 53, 1303–1308.
12 G. V. Louie and G. D. Brayer, J. Mol. Biol., 1990, 214, 527–555.
13 T. Izard, G. Evans, R. A. Borgon, C. L. Rush, G. Bricogne and
P. R. Bois, Nature, 2004, 427, 171–175.
absorption spectra of both ferrous and ferric hemes in this
spectral region cause small differences in their overlap with
emission of many popular small dyes (Fig. S1, ESIw), which
makes it difficult to discriminate the two oxidation states by
fluorescence. The broad Atpt emission spectrum and its
favorable position of lmax at 459 nm allow for the overlap
with both the Soret and Q absorption bands of cyt c amplifying
differences in the integrals J(l) for the reduced and oxidized
hemes (Fig. S1 and S4, ESIw).
The kinetic results obtained with a small noninvasive Atpt
dye suggest a valuable approach for studying redox reactions of
heme proteins, particularly those involving two or more heme
centers. ET in cyt c oxidase, bc1 complex, and between cyt c and
cyt c peroxidase are just a few examples21 where overlapping
heme spectra complicate measurements of the heme redox
changes by absorption techniques. Replacement of the heme
iron by zinc in one of the heme centers for photoinduced redox
reactions is one strategy to solve this problem.23 However, the
metal reconstitution procedure requires protein treatment
with hydrogen fluoride, which may lead to large protein losses,
and is not easily applicable to multiheme24–26 proteins. A well-
established thiol labeling procedure, which is effective even
for more challenging membrane proteins,27 provides a straight-
forward alternative to protein modification for studies of
the thermal redox reactions with widely-available fluorescence
instrumentation. Furthermore, because of the FRET distance
dependence, a strategic placement of Atpt in multiheme proteins
could enable changes in the redox and potentially also the
ligation state of a particular heme center to be measured.
In summary, Atpt iodoacetamide is a new reagent for
highly-efficient and minimally invasive fluorescent labeling of
proteins. The photophysical properties of the small Atpt probe
provide multiple options for monitoring protein folding and
conformational changes through FRET interactions with
14 A. S. Ito, R. D. Turchiello, I. Y. Hirata, M. H. Cezari, M. Meldal
and L. Juliano, Biospectroscopy, 1998, 4, 395–402.
15 H. Chen, S. S. Ahsan, M. B. Santiago-Berrios, H. D. Abruna and
W. W. Webb, J. Am. Chem. Soc., 2010, 132, 7244–7245.
16 A. M. Carver, M. De, H. Bayraktar, S. Rana, V. M. Rotello and
M. J. Knapp, J. Am. Chem. Soc., 2009, 131, 3798–3799.
17 S. Kuznetsova, G. Zauner, R. Schmauder, O. Mayboroda,
A. Deelder, T. J. Aartsma and G. W. Canters, Anal. Biochem.,
2006, 350, 52–60.
18 J. M. Salverda, A. V. Patil, G. Mizzon, S. Kuznetsova, G. Zauner,
N. Akkilic, G. W. Canters, J. J. Davis, H. A. Heering and
T. J. Aartsma, Angew. Chem., Int. Ed., 2010, 49, 5776–5779.
19 H. Wang, K. Chen, G. Niu and X. Chen, Mol. Pharmaceutics,
2009, 6, 285–294.
20 B. Schuler, E. A. Lipman and W. A. Eaton, Nature, 2002, 419,
743–747.
21 Biological Inorganic Chemistry: Structure and Reactivity, ed.
I. Bertini, H. B. Gray, E. I. Stiefel and J. S. Valentine, University
Science Books, Sausalito, CA, 2007.
22 F. A. Armstrong, Curr. Opin. Chem. Biol., 2005, 9, 110–117.
23 S. A. Kang, P. J. Marjavaara and B. R. Crane, J. Am. Chem. Soc.,
2004, 126, 10836–10837.
24 G. Su Pulcu, B. L. Elmore, D. M. Arciero, A. B. Hooper and
S. J. Elliott, J. Am. Chem. Soc., 2007, 129, 1838–1839.
25 O. Farver, P. M. Kroneck, W. G. Zumft and I. Pecht, Proc. Natl.
Acad. Sci. U. S. A., 2003, 100, 7622–7625.
26 C. M. Paquete and R. O. Louro, Dalton Trans., 2010, 39,
4259–4266.
27 R. B. Spruijt, C. J. Wolfs, J. W. Verver and M. A. Hemminga,
Biochemistry, 1996, 35, 10383–10391.
c
5716 Chem. Commun., 2011, 47, 5714–5716
This journal is The Royal Society of Chemistry 2011