eq 3);4 dimerization of MBH acetates and carbonates
if R is an alkyl group in the presence of Lewis base
(Scheme 1, eq 4).5
The prenylated indole alkaloids containing a spirocy-
clopenteneoxindole scaffold isolated from both terrestrial
and marine fungi have attracted intense research efforts
owing to their complex molecular structures and range of
biological activities.8 Recently, our group has reported an
efficient method to construct this important structural motif
through annulation of isatin-derived electron-deficient al-
kenes with allenoate in the presence of phosphine.9 Herein,
we to disclose a phosphine-catalyzed highly regio- and dias-
tereoselective [3 þ 2] annulation of MBH carbonates with
isatylidene malononitriles to produce spirocyclopenteneox-
indoles in good yields under mild conditions (Scheme 2). It
should be also mentioned here that during our preparation of
this manuscript, Barbas and his co-workers have reported a
novel asymmetric [3 þ 2] cycloaddition of MBH carbonates
with methyleneindolinones in the presence of a chiral phos-
phine to give the corresponding spirocyclopentaneoxindoles,
which have different regioselectivities from ours, in good
yields and high ee values.10
Scheme 1. Transformations of MBH Acetates or Carbonates
Scheme 2. Phosphine-Catalyzed [3 þ 2] Annulations of Isatyli-
denes To Construct Spirocyclopenteneoxindoles
Among these transformations, annulation of MBH acet-
ates and carbonates with electron-deficient olefins is an ex-
tremely useful synthetic method to construct multifunctional
cyclic compounds because the in situ generated phosphorus
ylides from MBH acetates and carbonates in the presence of
tertiary phosphines are very reactive 1,3-dipoles in a variety
of annulations. In this aspect, Lu and co-workers first re-
ported a series of intra- and intermolecular [3 þ n] annula-
tions (n = 2, 4, 6) using MBH carbonates as 1,3-dipoles with
various electron-deficient olefins catalyzed by tertiary phos-
phine, affording the corresponding cycloadducts in good
yields and high regioselectivities under mild conditions.4aꢀf
More recently, Zhang, Huang, and He and co-workers have
also developed several MBH acetates and carbonates in-
volved [4 þ 1] annulations to give the annulation products in
high yields, respectively.6 Furthermore, Tang’s group uti-
lized spirobiindane-based chiral phosphines as catalysts to
provide the corresponding intramolecular [3 þ 2] annulation
products in good yields along with high ee values in 2010.7
We initially utilized 20 mol % of PPh3 as catalyst and
ethyl 2-((tert-butoxycarbonyloxy)(4-nitrophenyl)methyl)-
acrylate 1a (1.3 equiv) and 2-(1-benzyl-2-oxoindolin-3-
ylidene)malononitrile 2a (1.0 equiv) as substrates to
investigate the influence of solvents on this annulation reac-
tion. The results of these experiments are summarized in
Table 1. It was found that toluene is the best solvent in this
reaction, giving the corresponding annulation product 3a
in >99% yield along with >99:1 dr within 24 h (Table 1,
entries 1ꢀ6). The relative configuration of major product
(4) (a) Du, Y.-S.; Lu, X.-Y.; Zhang, C.-M. Angew. Chem., Int. Ed.
2003, 42, 1035. (b) Du, Y.-S.; Feng, J.-Q.; Lu, X.-Y. Org. Lett. 2005, 7,
1987. (c) Feng, J.-Q.; Lu, X.-Y.; Kong, A.-D.; Han, X.-L. Tetrahedron
2007, 63, 6035. (d) Zheng, S.-Q.; Lu, X.-Y. Org. Lett. 2008, 10, 4481. (e)
Zheng, S.-Q.; Lu, X.-Y. Tetrahedron Lett. 2009, 50, 4532. (f) Zheng,
S.-Q.; Lu, X.-Y. Org. Lett. 2009, 11, 3978. (g) Ye, L.-W.; Sun, X.-L.; Wang,
Q.-G.; Tang, Y. Angew. Chem., Int. Ed. 2007, 46, 5951. (h) Zhou, R.; Wang,
J.-F.; Song, H.-B.; He, Z.-J. Org. Lett. 2011, 13, 580. (i) Cowen, B. J.; Miller,
J. S. Chem. Soc. Rev. 2009, 38,3102.(j)Wei,Y.;Shi,MAcc. Chem. Res. 2010,
43, 1005. (k) Marinetti, A.; Voituriez, A. Synlett 2010, 174.
(5) (a) Hoffmann, H. M. R.; Egger, U.; Poly, W. Angew. Chem., Int.
Ed. 1987, 26, 1015. (b) Poly, W.; Schomburg, D.; Hoffmann, H. M. R. J.
Org. Chem. 1988, 53, 3701. (c) Hoffmann, H. M. R.; Welchert, A.;
Slawin, A. M. Z.; Williams, D. J. Tetrahedron 1990, 46, 5591. (d) Kim,
J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173.
(8) Bond, R. F.; Boeyens, J. C. A.; Holzapfel, C. W.; Steyn, P. S. J.
Chem. Soc., Perkin Trans. 1 1979, 1751. (b) Williams, R. M.; Stocking,
E. M.; Sanz-Cevera, J. F. Top. Curr. Chem. 2000, 209, 97. (c) Williams,
R. M. Chem. Pharm. Bull. 2002, 50, 711. (d) Greshock, T. J.; Grubbs,
A. W.; Jiao, P.; Wicklow, D. T.; Gloer, J. B.; Williams, R. M. Angew.
Chem., Int. Ed. 2008, 47, 3573. (e) Miller, K. A.; Tsukamoto, S.;
Williams, R. M. Nat. Chem. 2009, 1, 63.
(6) (a) Chen, Z.-L.; Zhang, J.-L. Chem. Asian J. 2010, 5, 1542. (b) Xie,
P.-Z.; Huang, Y.; Chen, R.-Y. Org. Lett. 2010, 12, 3768. (c) Tian, J.-J.;
Zhou, R.; Sun, H.-Y.; Song, H.-B.; He, Z.-J. J. Org. Chem. 2011, 76,
2374.
(7) Wang, Q.-G.; Zhu, S.-F.; Ye, L.-W.; Zhou, C.-Y.; Sun, X.-L.;
Tang, Y.; Zhou, Q.-L. Adv. Synth. Catal. 2010, 352, 1914.
(9) (a) Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M. Chem. Commun.
2011, 47, 1548. (b) Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M. Org. Lett.
2011, 13, 1142.
(10) Tan, B.; Candeias, N. R.; Barbas, C. F., III. J. Am. Chem. Soc.
2011, 133, 4672. The regiochemistry of the major product is different
from that of 3a.
Org. Lett., Vol. 13, No. 13, 2011
3349