W. Liu et al. / Tetrahedron 67 (2011) 4236e4242
4241
a naked eye recognition system in virtue of its color changes upon
light or proton stimuli.
138.93, 140.25, 140.49, 142.44, 143.37, 159.62, 191.24. MS (ESI) m/z
578.4 (MþH).
4.5. Synthesis of compound 3
4. Experimental
Compound 3 was synthesized according to the reference.7b,17 In
a 250 mL flask equipped with a condenser and a stirrer, rhodamine
B (3.00 g) was dissolved in 150 mL of ethanol. Hydrazine hydrate
(85%, 7.0 mL) dissolved in 10 mL of ethanol was added dropwise
with vigorous stirring at room temperature. After the addition, the
stirred mixture was refluxed for 4 h, while the solution color
changed from dark purple to light orange. The mixture was then
cooled and ethanol was removed under reduced pressure. To the
mixture was slowly added HCl (1.00 M) in the flask to generate
a clear red solution. Subsequently, NaOH (1.00 M) was introduced
slowly with stirring until the pH of the solution reached 9e10. The
resulting precipitate was filtered, washed with water, and then
dried in vacuum. A product of compound 3 (2.22 g) was obtained as
a pink solid in 73% yield. Mp 176e177 ꢂC. 1H NMR (CDCl3, 400 MHz),
4.1. General methods
NMR spectra were recorded on a Bruker AV400 (400 MHz)
spectrometer using CDCl3 as a solvent and tetramethylsilane as an
internal standard. UV/vis spectra were recorded on a PerkineElmer
Lambda 900 spectrometer. Photoirradiation was carried out using
an SHG-200 UV lamp, a CX-21 ultraviolet fluorescence analysis
cabinet, and a BMH-250 visible lamp. Lights of appropriate wave-
lengths were isolated using different light filters. Luminescence
spectra were measured on a HITACHI 4500 fluorescence spectro-
photometer. The luminescence quantum yield in solution was
measured using anthracene (V¼0.27 in DMSO) as a reference. All
solvents used were of spectro-grade and purified by distillation
prior to use.
d
(ppm): 1.09 (t, 12H, J¼6.8 Hz), 3.24e3.29 (q, 8H, J¼6.7 Hz), 3.53 (s,
2H), 6.22 (d, 2H, J¼8.0 Hz), 6.34e6.40 (m, 4H), 7.03(d, 1H, J¼8.0 Hz),
4.2. Synthesis
7.38 (t, 2H, J¼4.0 Hz), 7.86 (d, 1H, J¼4.0 Hz). 13C NMR (CDCl3,
100 MHz),
d (ppm): 12.62, 44.37, 65.91, 98.00, 104.63, 108.05,
The rhodamine-based perfluorodiarylethene derivative, 1-[2-
methyl-5-(4-methoxylphenyl)-3-thienyl]-2-[2-methyl-5-(4-rho-
122.99, 123.83, 128.09, 130.06, 132.49, 148.90, 151.57, 153.86, 166.14.
MS (ESI) m/z 456.3 (MþH).
damine
B hydrazine-Schiff base-phenyl)-3-thienyl]perfluoro-
cyclopentene (1), was synthesized from rhodamine B hydrazide
and perfluorodiarylethene in 75% yield. Compound 1 and other
Acknowledgements
intermediate products were confirmed structurally by 1H and 13
C
This work was supported by the National Natural Science
Foundation of China (20962008), New Century Excellent Talents in
University (NCET-08-0702), Project of Jiangxi Academic and Tech-
nological Leader (2009DD00100), Natural Science Foundation of
Jiangxi Province (2009GZH0034, 2009GQH0036, 2010GQH0038),
and Project of the Science Funds of Jiangxi Education Office
(GJJ11026).
NMR spectroscopy. Their synthetic route is summarized in
Scheme 2 and experimental details were carried out as follows.
4.3. Synthesis of compound 1
To a stirred solution of 1-[2-methyl-5-(4-methoxylphenyl)-3-
thienyl]-2-[2-methyl-5-(4-formylphenyl)-3-thienyl]perfluorocyclo
pentene (2, 0.80 g) and rhodamine B hydrazine (3, 0.65 g) in 80 mL
of chloroform, a few drops of acetic acid were added to catalyze the
reaction at room temperature and under a nitrogen atmosphere.
After stirring for 10 min, the reaction mixture was heated to 85 ꢂC
and refluxed for 72 h; it was then allowed to warm to room tem-
perature. The mixture solution was subsequently washed with di-
lute NaOH solution and extracted with CHCl3, and the organic
phase was dried over anhydrous magnesium sulfate, filtered, and
evaporated. The crude product was purified by column chroma-
tography on silica gel (ethyl acetate/petroleum ether, v/v¼1/6) to
give pure product 1.05 g in 75% yield. Mp 170e171 ꢂC. 1H NMR
References and notes
1. (a) Irie, M. Chem. Rev. 2000, 100, 1683e1684; (b) Tian, H.; Yang, S. J. Chem. Soc.
Rev. 2004, 33, 85e97; (c) Szacitowski, K. Chem. Rev. 2008, 108, 3481e3548; (d)
€
Tomasulo, M.; Sortino, S.; Raymo, F. M. Org. Lett. 2005, 7, 1109e1112; (e) Kuhni,
ꢀ
J.; Belser, P. Org. Lett. 2007, 9, 1915e1918; (f) Terazono, Y.; Kodis, G.; Andreasson,
€
J.; Jeong, G.; Brune, A.; Hartmann, T.; Durr, H.; Moore, A. L.; Moore, T. A.; Gust, D.
ꢀ
J. Phys. Chem. B 2004, 108, 1812e1814; (g) Straight, S. D.; Andreasson, J.; Kodis,
G.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 2005, 127, 2717e2724.
2. (a) Cooredor, C. C.; Huang, Z. L.; Belfield, K. D.; Morales, A. R.; Bondar, M. V.
Chem. Mater. 2007, 19, 5165e5173; (b) Shen, S. H.; Chen, H. M. P.; Geng, Y.;
Jacobs, S. D.; Marshall, K. L.; Blanton, T. N. Adv. Mater. 2003, 15, 1061e1065; (c)
Zhang, C.; Zhou, H. P.; Liao, L. Y.; Feng, W.; Sun, W.; Li, Z. X.; Xu, C. H.; Fang, C. J.;
Sun, L. D.; Zhang, Y. W.; Yan, C. H. Adv. Mater. 2009, 21, 1e5; (d) Wang, S.; Qi, Q.
Z.; Li, C. P.; Ding, G. H.; Kim, S.-H. Dyes Pigm. 2011, 89, 188e192.
3. (a) Tian, H.; Feng, Y. L. J. Mater. Chem. 2008, 18, 1617e1622; (b) Liddell, P. A.;
Kodis, G.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 2002, 124,
7668e7669; (c) Dedecker, P.; Hotta, J.; Flors, C.; Sliwa, M.; Uji-I, H.; Roeffaers,
M. B. J.; Ando, R.; Mizuno, H.; Miyawaki, A.; Hofkens, J. J. Am. Chem. Soc. 2007,
129, 16132e16141.
4. (a) Tian, H.; Wang, S. Chem. Commun. 2007, 781e792; (b) Higashiguchi, K.;
Matsuda, K.; Tanifuji, N.; Irie, M. J. Am. Chem. Soc. 2005, 127, 8922e8923; (c) Pu,
S. Z.; Liu, G.; Shen, L.; Xu, J. K. Org. Lett. 2007, 9, 2139e2142; (d) Pu, S. Z.; Zheng,
C. H.; Le, Z. G.; Liu, G.; Fan, C. B. Tetrahedron 2008, 64, 2576e2585.
5. (a) Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T. Nature 2002, 420,
759e760; (b) Lim, S. J.; Seo, J.; Park, S. Y. J. Am. Chem. Soc. 2006, 128,
14542e14547; (c) Tian, H.; Qin, B.; Yao, R. X.; Zhao, X. L.; Yang, S. J. Adv. Mater.
2003, 15, 2104e2107.
(CDCl3, 400 MHz),
d
(ppm): 1.15 (t, 12H, J¼6.0 Hz), 1.91 (s, 3H), 1.95
(s, 3H), 3.29e3.35 (q, 8H, J¼8.0 Hz), 3.83 (s, 3H), 6.23e6.26 (m, 2H),
6.44e6.53 (m, 4H), 6.89 (s, 1H), 6.91 (s, 1H), 7.12 (s, 1H), 7.14 (s, 1H),
7.24 (s,1H), 7.42e7.55 (m, 8H), 7.99 (d,1H, J¼8.0 Hz), 8.72 (s,1H). 13C
NMR (CDCl3, 100 MHz),
d (ppm): 12.62, 14.40, 14.50, 44.32, 55.38,
66.24, 97.97, 106.30, 108.04, 114.41, 121.29, 122.79, 123.34, 123.93,
125.30, 125.65, 126.20, 126.93, 128.03, 128.30, 129.63, 133.29,
134.25, 141.71, 142.21, 146.68, 148.98, 151.56, 153.30, 159.55, 164.87.
MS (ESI) m/z 1017.2 (MþH).
4.4. Synthesis of compound 2
6. (a) Sameiro, M.; Goncalves, T. Chem. Rev. 2009, 109, 190e212; (b) Ko, S. K.; Yang,
Y. K.; Tae, J.; Shin, I. J. Am. Chem. Soc. 2006, 128, 14150e14155; (c) Zheng, H.;
Shang, G. Q.; Yang, S. Y.; Gao, X.; Xu, J. G. Org. Lett. 2008, 10, 2357e2360; (d)
Simone, A. D.; Corrie, J. E. T.; Dale, R. E.; Irving, M.; Fraternali, F. J. Am. Chem. Soc.
2008, 130, 17120e17128; (e) Chen, X. Q.; Jou, M. J.; Lee, H. Y.; Kou, S. Z.; Lim, J. S.;
Nam, S. W.; Park, S. S.; Kim, K. M.; Yoon, J. Y. Sens. Actuators, B 2009, 137,
597e602; (f) Xi, P. X.; Dou, J. Y.; Huang, L.; Xu, M.; Chen, F. J.; Wu, Y. J.; Bai, D. C.;
Li, W. G.; Zeng, Z. Z. Sens. Actuators, B 2010, 148, 337e341.
Compound 2 was synthesized according to a similar method in
our previous report.11f,16 Mp 141e142 ꢂC. 1H NMR (CDCl3, 400 MHz),
d
(ppm): 1.95 (s, 3H), 2.00 (s, 3H), 3.83 (s, 3H), 6.90 (s,1H), 6.92
(s,1H), 7.15 (s,1H), 7.45 (t, 3H, J¼8 Hz), 7.69 (d, 2H, J¼8 Hz), 7.89 (d,
2H, J¼8 Hz),10.00 (s,1H). 13C NMR (CDCl3,100 MHz),
d (ppm): 14.47,
14.46, 55.39, 114.44, 116.20, 121.20, 124.54, 125.17, 125.58, 125.80,
126.09, 126.49, 126.95, 127.27, 128.73, 129.97, 130.50, 135.44, 136.94,
7. (a) Zou, Q.; Jin, J. Y.; Xu, B.; Ding, L.; Tian, H. Tetrahedron 2011, 67, 915e921; (b)
Huang, K. W.; Yang, H.; Zhou, Z. G.; Yu, M. X.; Li, F. Y.; Gao, X.; Yi, T.; Huang, C. H.