In summary, we have synthesized and structurally charac-
terized the uranyl complexes of a bis-MeTAM ligand for the
8ꢀ
first time. Structural analysis of [L(UO2)]4 shows that the
tetramer formation is governed by the highly relaxed and
planar coordination geometry around UO22+. The corres-
ponding uranyl methoxide complex forms a monomeric salt
structure with inclusion of a methoxide ligand. The results
presented highlight the effect of uranyl coordination geometry
in the molecular structures and will provide information for
the design of uranyl sequestering agents based on the
TAM unit.
We thank Tiffany A. Pham and Drs. Geza Szigethy, Ga-lai
´
Law, and Christopher M. Andolina for help and discussions.
This research is supported by the Director, Office of Science,
Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences of the U.S. Department of Energy
at LBNL under Contract No. DE-AC02-05CH11231.
Fig.
without hydrogen atoms. Up: structure of [K2LUO2(OMe)]ꢀ; down:
side view of [LUO2(OMe)]3ꢀ
2
Crystal structure of [LUO2(OMe)]3ꢀ (30% probability)
.
Notes and references
2+
two MeTAM units of L are coordinated to one UO2
ion
1 J. G. Hamilton, Rev. Mod. Phys., 1948, 20, 718.
2 S. Fortier and T. W. Hayton, Coord. Chem. Rev., 2010, 254,
197.
3 N. N. Greenwood and A. Earnshaw, Chemistry of the Elements,
Pergamon Press, New York, 1997.
4 T. Bailly, R. Burgada, T. Prange and M. Lecouvey, Tetrahedron
Lett., 2003, 44, 189.
5 G. Y. Xu, C. H. Yang, B. Liu, X. H. Wu and Y. Y. Xie, Heteroat.
Chem., 2004, 15, 251.
6 M. Sawicki, J. M. Siaugue, C. Jacopin, C. Moulin, T. Bailly,
R. Burgada, S. Meunier, P. Baret, J. L. Pierre and F. Taran,
Chem.–Eur. J., 2005, 11, 3689.
7 R. Burgada, T. Bailly, T. Prange and M. Lecouvey, Tetrahedron
Lett., 2007, 48, 2315.
(Fig. 2) with a methoxide ligand occupying the fifth position.
The dramatically different coordination mode of L is most
likely due to the combined effects of the methoxide ligand and
K+ ions. The methoxide ligand is a much stronger donor
(U–O(3) = 2.288(3) A)26 than the amide oxygen and its
coordination makes the second MeTAM unit free of distortion.
In addition, interactions of the K+ ion (K2) with both the
backbone oxygen (O10) and the uranyl oxo group (O1) bring
the second MeTAM unit within the vicinity of uranyl ion, to
which the first MeTAM unit of L has also been bound.
As shown in Fig. 2, [LUO2(OMe)]3ꢀ shows a rather ruffled
structure with large torsion angles (25.4(2) to 33.7(2)1)
between the MeTAM planes and the corresponding O–U–O
planes. The bent binding of the MeTAM units is partially due
to the length of the 5LiO backbone, since a similarly ruffled
structure with bent HOPO binding was observed in the
5Li-(Me-3,2-HOPO) uranyl complex.14 The K+ꢁ ꢁ ꢁOphenolate
interactions further contribute to the bending because the
torsion angles mentioned above are always larger for the
MeTAM unit with K+ꢁ ꢁ ꢁOphenolate interactions than those
without in [LUO2(OMe)]3ꢀ. The sums of the equatorial angles
(360.4(2) and 360.3(2)1) are close to 3601 and the mean
deviation of the equatorial atoms from the equatorial planes
8 A. E. V. Gorden, J. D. Xu, K. N. Raymond and P. Durbin, Chem.
Rev., 2003, 103, 4207.
9 A. Leydier, D. Lecercle, S. Pellet-Rostaing, A. Favre-Reguillon,
F. Taran and M. Lemaire, Tetrahedron, 2008, 64, 6662.
10 A. Leydier, D. Lecercle, S. Pellet-Rostaing, A. Favre-Reguillon,
F. Taran and M. Lemaire, Tetrahedron, 2008, 64, 11319.
11 P. W. Durbin, B. Kullgren, J. Xu and K. N. Raymond, Radiat.
Prot. Dosim., 1994, 53, 305.
12 P. W. Durbin, B. Kullgren, J. D. Xu and K. N. Raymond, Health
Phys., 1997, 72, 865.
13 P. W. Durbin, B. Kullgren, S. N. Ebbe, J. D. Xu and
K. N. Raymond, Health Phys., 2000, 78, 511.
14 J. D. Xu and K. N. Raymond, Inorg. Chem., 1999, 38, 308.
15 G. Szigethy and K. N. Raymond, Inorg. Chem., 2010, 49,
6755.
16 G. Szigethy and K. N. Raymond, Inorg. Chem., 2009, 48,
11489.
17 G. Szigethy and K. N. Raymond, Chem.–Eur. J., 2011, 17, 1818.
18 P. Thuery and B. Masci, Supramol. Chem., 2003, 15, 95.
19 J. Casellato, P. A. Vigato, S. Tamburini, R. Graziani and
M. Vidali, Inorg. Chim. Acta, 1983, 72, 141.
20 S. R. Sofen, K. Abudari, D. P. Freyberg and K. N. Raymond,
J. Am. Chem. Soc., 1978, 100, 7882.
is ca. 0.065 A, suggesting a similarly good planar geometry
2+
around UO2
as the tetramer. Due to the presence of
K+ꢁ ꢁ ꢁO(1) interaction, the U–O(1) distance is ca. 0.01 A
longer than the corresponding U–O(2) distance. The
U–Ophenolate distances (2.350(2) to 2.412(2) A) and the
21 C. J. Burns, D. L. Clark, R. J. Donohoe, P. B. Duval, B. L. Scott
and C. D. Tait, Inorg. Chem., 2000, 39, 5464.
22 J. A. Danis, M. R. Lin, B. L. Scott, B. W. Eichhorn and
W. H. Runde, Inorg. Chem., 2001, 40, 3389.
23 P. Thuery and B. Masci, Dalton Trans., 2003, 2411.
24 P. L. Arnold, A. J. Blake, C. Wilson and J. B. Love, Inorg. Chem.,
2004, 43, 8206.
25 P. L. Arnold, D. Patel, A. J. Blake, C. Wilson and J. B. Love,
J. Am. Chem. Soc., 2006, 128, 9610.
26 I. G. Santos and U. Abram, Inorg. Chem. Commun., 2004, 7, 440.
MeTAM bite angles (65.81(8) to 66.44(8)1) are similar to those
8ꢀ
in [LUO2]4
(see above). The remaining three equatorial
angles in [LUO2(OMe)]3ꢀ are in the narrow range of
65.81(8) to 78.02(9)1, which are considerably closer to 75.71
than those in the 5Li or m-xyl-(Me-3,2-HOPO) uranyl
complexes,14,15 indicating a much more relaxed coordination
environment around UO22+ in [LUO2(OMe)]3ꢀ than those in
the Me-3,2-HOPO complexes.z
c
6394 Chem. Commun., 2011, 47, 6392–6394
This journal is The Royal Society of Chemistry 2011