Journal of the American Chemical Society
ARTICLE
(2) Dzarnoski, J.; O’Neal, H. E.; Ring, M. A. J. Am. Chem. Soc. 1981,
103, 5740.
(35) Leigh, W. J.; Lollmahomed, F.; Harrington, C. R. Organome-
tallics 2006, 25, 2055.
(3) Isobe, C.; Cho, H.-C.; Crowell, J. E. Surf. Sci. 1993, 295, 117.
(4) Du, W.; Keeling, L. A.; Greenlief, C. M. J. Vac. Sci. Technol. A
1994, 12, 2281.
(36) Leigh, W. J.; Lollmahomed, F.; Harrington, C. R.; McDonald,
J. M. Organometallics 2006, 25, 5424.
(37) Lollmahomed, F.; Huck, L. A.; Harrington, C. R.; Chitnis, S. S.;
Leigh, W. J. Organometallics 2009, 28, 1484.
(5) Boganov, S. E.; Egorov, M. P.; Faustov, V. I.; Krylova, I. V.; Nefedov,
O. M.; Becerra, R.; Walsh, R. Russ. Chem. Bull. Int. Ed. 2005, 54, 483.
(6) Becerra, R.; Walsh, R. Phys. Chem. Chem. Phys. 2007, 9, 2817.
(7) Boganov, S. E.; Egorov, M. P.; Faustov, V. I.; Nefedov, O. M. In
The chemistry of organic germanium, tin and lead compounds; Rappoport,
Z., Ed.; John Wiley and Sons: New York, 2002; Vol. 2, p 749.
(8) Becerra, R.; Boganov, S. E.; Egorov, M. P.; Nefedov, O. M.;
Walsh, R. Chem. Phys. Lett. 1996, 260, 433.
(9) Becerra, R.; Boganov, S. E.; Egorov, M. P.; Faustov, V. I.;
Promyslov, V. M.; Nefedov, O. M.; Walsh, R. Phys. Chem. Chem. Phys.
2002, 4, 5079.
(10) Becerra, R.; Walsh, R. J. Organomet. Chem. 2001, 636, 49.
(11) Becerra, R.; Walsh, R. Phys. Chem. Chem. Phys. 2002, 4, 6001.
(12) Alexander, U. N.; King, K. D.; Lawrance, W. D. Chem. Phys. Lett.
2000, 319, 529.
(38) Lollmahomed, F.; Leigh, W. J. Organometallics 2009, 28, 3239.
(39) Leigh, W. J.; Harrington, C. R. J. Am. Chem. Soc. 2005, 127, 5084.
(40) Huck, L. A.; Leigh, W. J. Organometallics 2007, 26, 1339.
(41) Huck, L. A.; Leigh, W. J. Organometallics 2009, 28, 6777.
(42) Leigh, W. J.; Dumbrava, I. G.; Lollmahomed, F. Can. J. Chem.
2006, 84, 934.
(43) Becerra, R.; Boganov, S. E.; Egorov, M. P.; Lee, V. Y.; Nefedov,
O. M.; Walsh, R. Chem. Phys. Lett. 1996, 250, 111.
(44) Saito, K.; Obi, K. Chem. Phys. 1994, 187, 381.
(45) Becerra, R.; Boganov, S. E.; Egorov, M. P.; Faustov, V. I.;
Nefedov, O. M.; Walsh, R. Can. J. Chem. 2000, 78, 1428.
(46) Becerra, R.; Boganov, S. E.; Egorov, M. P.; Krylova, I. V.;
Nefedov, O. M.; Walsh, R. J. Phys. Chem. A 2007, 111, 1434.
(47) Perdew, J. P.; Burke, K. Int. J. Quantum Chem. 1996, 57, 309.
(48) Gibbon, G. A.; Rousseau, Y.; Van Dyke, C. H.; Mains, G. J.
Inorg. Chem. 1966, 5, 114.
(13) Becerra, R.; Boganov, S. E.; Egorov, M. P.; Faustov, V. I.;
Krylova, I. V.; Nefedov, O. M.; Promyslov, V. M.; Walsh, R. Phys. Chem.
Chem. Phys. 2004, 6, 3370.
(49) Angus, P. C.; Stobart, S. R. J. Chem. Soc., Dalton Trans. 1975,
1975, 2342.
(50) Farkas, A. Orthohydrogen, Parahydrogen and Heavy Hydrogen;
(14) Becerra, R.; Walsh, R. Phys. Chem. Chem. Phys. 2009, 11, 3539.
(15) Becerra, R.; Walsh, R. Phys. Chem. Chem. Phys. 1999, 1, 5301.
(16) Becerra, R.; Boganov, S. E.; Egorov, M. P.; Faustov, V. I.;
Nefedov, O. M.; Walsh, R. Phys. Chem. Chem. Phys. 2001, 3, 184.
(17) Becerra, R.; Boganov, S. E.; Egorov, M. P.; Faustov, V. I.;
Nefedov, O. M.; Walsh, R. J. Am. Chem. Soc. 1998, 120, 12657.
(18) Alexander, U. N.; Trout, N. A.; King, K. D.; Lawrance, W. D.
Chem. Phys. Lett. 1999, 299, 291.
(19) Becerra, R.; Egorov, M. P.; Krylova, I. V.; Nefedov, O. M.;
Walsh, R. Chem. Phys. Lett. 2002, 351, 47.
(20) Becerra, R.; Boganov, S. E.; Egorov, M. P.; Faustov, V. I.;
Krylova, I. V.; Nefedov, O. M.; Promyslov, V. M.; Walsh, R. Phys. Chem.
Chem. Phys. 2007, 9, 4395.
Cambridge University Press: London, 1935.
(51) Benoit, H.; Piejus, P. C. R. Acad. Sci. Ser. B 1967, 265B, 101.
(52) In addition to the resonances due to HD and 8-d, the spectrum
of the 4/AcOD photolysate also showed evidence for the formation of
small amounts of H2 and all-protiated 8, in similar relative yields to what
was obtained in the 4/AcOH photolysis. We thus conclude that the
formation of H2 in the 4/AcOD experiment is due to the presence of
small amounts of AcOH in the mixture and not to unimolecular
elimination of H2 from 4.
(53) Massol, M.; Satge, J.; Riviere, P.; Barrau, J. J. Organomet. Chem.
1970, 22, 599.
(21) Alexander, U. N.; King, K. D.; Lawrance, W. D. Phys. Chem.
Chem. Phys. 2003, 5, 1557.
(54) Gibbon, G. A.; Wang, J. T.; Van Dyke, C. H. Inorg. Chem. 1967,
6, 1989.
(22) (a) Thimer, K. C.; Al-Rafia, S. M. I.; Ferguson, M. J.; McDonald,
R.; Rivard, E. Chem. Commun. 2009, 7119. (b) Al-Rafia, S. M. I.; Malcolm,
A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem. Soc. 2011,
133, 777.
(55) Heaven, M. W.; Metha, G. F.; Buntine, M. A. J. Phys. Chem. A
2001, 105, 1185.
(56) Heaven, M. W.; Metha, G. F.; Buntine, M. A. Aust. J. Chem.
2001, 54, 185.
(23) (a) Rupar, P. A.; Jennings, M. C.; Ragogna, P. J.; Baines, K. M.
Organometallics 2007, 26, 4109. (b) Ghadwal, R. S.; Roesky, H. W.;
Merkel, S.; Stalke, D. Chem. -Eur. J. 2010, 16, 85. (c) Li, J.; Merkel, S.;
Henn, J.; Meindl, K.; D€oring, A.; Roesky, H. W.; Ghadwal, R. S.; Stalke,
D. Inorg. Chem. 2010, 49, 775.
(57) Moiseev, A. G.; Leigh, W. J. Organometallics 2007, 26, 6268.
(58) Moiseev, A. G.; Coulais, E.; Leigh, W. J. Chem.—Eur. J. 2009,
15, 8485.
(59) Mochida, K.; Kayamori, T.; Wakasa, M.; Hayashi, H.; Egorov,
M. P. Organometallics 2000, 19, 3379.
(24) Goldberg, D. E.; Hitchcock, P. B.; Lappert, M. F.; Thomas,
K. M.; Thorne, A. J.; Fjeldberg, T.; Haaland, A.; Schilling, B. E. R.
J. Chem. Soc., Dalton Trans. 1986, 1986, 2387.
(25) Grev, R. S.; Schaefer, H. F., III; Baines, K. M. J. Am. Chem. Soc.
1990, 112, 9458.
(26) Ricca, A.; Bauschlicher, C. W. J. Phys. Chem. A 1999, 103, 11121.
(27) Chen, W. C.; Su, M. D.; Chu, S. Y. Organometallics 2001,
20, 564.
(60) Nag, M.; Gaspar, P. P. Organometallics 2009, 28, 5612.
(61) Neumann, W. P.; Sakurai, H.; Billeb, G.; Brauer, H.; Kocher, J.;
Viebahn, S. Angew. Chem., Int. Ed. Engl. 1989, 28, 1028.
(62) Sakai, S. Int. J. Quantum Chem. 1998, 70, 291.
(63) Su, M. D.; Chu, S. Y. J. Am. Chem. Soc. 1999, 121, 11478.
(64) Birukov, A. A.; Faustov, V. I.; Egorov, M. P.; Nefedov, O. M.
Russ. Chem. Bull. Int. Ed. 2005, 54, 2003.
(65) Joo, H.; Kraka, E.; Quapp, W.; Cremer, D. Mol. Phys. 2007,
(28) Becerra, R.; Harrington, C. R.; Gaspar, P. P.; Leigh, W. J.;
Vargas-Baca, I.; Walsh, R.; Zhou, D. J. Am. Chem. Soc. 2005, 127, 17469.
(29) Trinquier, G. J. Am. Chem. Soc. 1990, 112, 2130.
(30) Grev, R. S.; Schaefer, H. F., III Organometallics 1992, 11,
3489.
105, 2697.
(66) Summerscales, O. T.; Jimenez-Halla, J. O. C.; Merino, G.;
Power, P. P. J. Am. Chem. Soc. 2011, 133, 180.
(67) (a) Grimme, S. J. Chem. Phys. 2006, 124, 034108. (b) Grimme,
S.; Neese, F. J. Chem. Phys. 2007, 127, 154116.
(31) Li, Q.-S.; Lu, R.-H.; Xie, Y.; Schaefer, H. F. I. J. Comput. Chem.
2002, 23, 1642.
(32) Carrier, W.; Zheng, W.; Osamura, Y.; Kaiser, R. I. Chem. Phys.
2006, 330, 275.
(33) Wang, X.; Andrews, L.; Kushto, G. P. J. Phys. Chem. A 2002,
106, 5809.
(68) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.
(69) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys.
2007, 126, 084108.
(70) Becerra, R.; Harrington, C. R.; Leigh, W. J.; Kefala, L. A.; Walsh,
R. Organometallics 2006, 25, 4439.
(71) Neumann, W. P. Chem. Rev. 1991, 91, 311.
(34) Leigh, W. J.; Harrington, C. R.; Vargas-Baca, I. J. Am. Chem. Soc.
2004, 126, 16105.
10534
dx.doi.org/10.1021/ja201190b |J. Am. Chem. Soc. 2011, 133, 10523–10534