structural motifs in many natural products and are structu-
rally related to plant pigments like flavonoids and antho-
cyanins. The thiochromene derivatives exhibit tumorigenic,
antibacterial,5 and antifungal6 activities together with ap-
plications in dyes for chemical fibers.7 Furthermore, chro-
mene and thiochromene analogs of the HIV-1 protease
inhibitor Ritonavir have been prepared and are under
clinical trials.8 According to reports of some of the patents
they also act as modulators of the estrogen receptors.9 In
addition, 4H-thiochromenoapomorphines have been found
to possess a high dopamine receptor binding affinity.10
A thorough literature survey revealed that the reports for
the synthesis of thiochromones are limited11 and are mainly
prepared from substituted thiophenols.12,13 2-Trifluoro-
methyl thiochromones were synthesized by treating 2-mer-
captophenyl ketones with trifluoroacetic anhydride in THF
in the presence of triethylamine.14 Further, thiochromone
derivatives have been achieved by an organocatalytic domino
thia-Michael/aldol reaction.15 However, the above methods
suffer from drawbacks such as toxic organic solvents, costly
reagents, cumbersome experimental procedures, and lacking
generality. Therefore, more general, efficient, and viable
routes with operational simplicity for the synthesis of thio-
chromone derivatives are very much desirable and would be
of great relevance to both synthetic and medicinal chemists.
It is pertinent to note that P2O5 is a mild, cheap, biode-
gradable, and readily available reagent, which has recently
emerged as a powerful catalyst for various organic trans-
formations.16 Furthermore, we devised a straightforward,
versatile, and one-pot synthesis of heterocycles utilizing
P2O5 as a catalyst.17 P2O5 is not only a versatile stable acidic
enolizing agent but also a dehydrating reagent uniquely
suited for a one-pot transformation. To the best of our
knowledge, no report on the use of P2O5 as a catalyst for the
synthesis of thiochromones utilizing β-oxodithioesters is
known. As part of our ongoing research program on the
development of new protocols for the synthesis of hetero-
cycles via a one-pot multicomponent reaction,18 herein we
report, for the first time, a one-pot three-component syn-
thesis of thiochromone frameworks by the coupling of
β-oxodithioesters, aldehydes, and cyclic 1,3-diketones cata-
lyzed by P2O5 under solvent-free conditions.
Recently, β-oxodithioesters have received much attention
as a key intermediate in the synthesis of various important
bioactive frameworks such as dihydropyrimidinone,19 pyrido-
pyrimidinone,19 pyrazole,20 benzo[a]quinolizine-4-thione,21
and 2H-chromene-2-thione.22 Therefore, we became intri-
gued in scouting the use of β-oxodithioesters to develop a
more generalized synthetic strategy for the synthesis of
functionalized thiochromones. β-Oxodithioesters are synthe-
sized by reported methods23 in good yields (70À80%). Thus,
when β-oxodithioesters 1 were treated with aldehydes 2 and
cyclic 1,3-diketones 3 under solvent-free conditions in the
presence of P2O5 at 100 °C, the corresponding 4-aryl-3-aroyl-
2-methylsulfanyl-4,6,7,8-tetrahydrothiochromen-5-ones 4aÀt
were obtained in high yields (Scheme 1).
Scheme 1. Synthesis of Thiochromen-5-ones 4
(6) Wang, G.; Yang, G.; Ma, Z.; Tian, W.; Fang, B.; Linbo Li, L. Int.
J. Chem. 2010, 2, 19.
(7) (a) Tilak, B. D.; Vaidya, V. M. Tetrahedron Lett. 1963, 9, 487.
(b) Tilak, B. D.; Jain, S. K. Indian J. Chem. 1969, 7, 17.
(8) (a) Kaye, P. T.; Musa, M. A.; Nchinda, A. T.; Nocanda, X. W.
Synth. Commun. 2004, 34, 2575. (b) Kaye, P. T. S. Afr. J. Chem. 2004, 57,
545.
(9) (a) Kaltenbach, R. F.; Robinson, S. P.; Trainor, G. L. U.S. Patent
2005/0267183 A1, December 1, 2005. (b) Zhang, X.; Sui, Z. U.S. Patent
2006/0020018 A1, January 26, 2006.
(10) Attila Sipos, A.; Toth, M.; Mueller, F. K. U.; Lehmann, J.;
Berenyi, S. Monatsh. Chem. 2009, 140, 473.
(11) (a) Katoaka, T.; Tomoto, A.; Shimizu, H.; Hori, M. J. Chem.
Soc., Perkin Trans. 1 1983, 2913. (b) Banzatti, C.; Mellini, P.; Salvadori,
P. Gazz. Chim. Ital. 1987, 117, 259. (c) Kaye, P. T. S. Afr. J. Sci. 2004,
100, 545.
ꢀ
(12) (a) Rasolofonjatovo, E.; Treguier, B.; Provot, O.; Hamze, A.;
Morvan, E.; Brion, J. -D.; Alami, M. Tetrahedron Lett. 2011, 52, 1036.
(b) Kenny, R. S.; Mashelkar, U. C.; Rane, D. M.; Bezawada, D. K.
Tetrahedron 2006, 62, 9280.
(13) Wang, W.; Li, H.; Wang, J.; Zu, L. J. Am. Chem. Soc. 2006, 128,
10354.
Initially, a mixture of 3-oxo-3-phenyldithiopropionic
acid methyl ester 1a (1.0 mmol), 4-nitrobenzaldehyde 2c
(14) (a) Usachev, B. I.; Shafeev, M. A.; Sosnovskikh, V. Y. Russ.
Chem. Bull. Int. Ed. 2006, 55, 504. (b) Usachev, B. I.; Sosnovskikh, V. Y.;
€
Shafeev, M, A.; Roschenthaler, G. -V. Phosphorus, Sulfur, Silicon 2005,
180, 1315.
(18) (a) Samai, S.; Nandi, G. C.; Kumar, R.; Singh, M. S. Tetrahe-
dron Lett. 2009, 50, 7096. (b) Samai, S.; Nandi, G. C.; Singh, P.; Singh,
M. S. Tetrahedron 2009, 65, 10155. (c) Nandi, G. C.; Samai, S.; Singh,
M. S. Synlett 2010, 1133. (d) Samai, S.; Nandi, G. C.; Singh, M. S.
Tetrahedron Lett. 2010, 51, 5555.
(19) Nandi, G. C.; Samai, S.; Singh, M. S. J. Org. Chem. 2010, 75,
7785.
(20) Peruncheralathan, S.; Khan, T. A.; Ila, H.; Junjappa, H. J. Org.
Chem. 2005, 70, 10030.
(21) Roy, A.; Nandi, S.; Ila, H.; Junjappa, H. Org. Lett. 2001, 3, 229.
(22) Verma, R. K.; Verma, G. K.; Raghuvanshi, K.; Singh, M. S.
Tetrahedron 2011, 67, 584.
(23) Samuel, R.; Asokan, C. V.; Suma, S.; Chandran, P.; Retnamma,
S.; Anabha, E. R. Tetrahedron Lett. 2007, 48, 8376.
(15) Rios, R.; Sunden, H.; Ibrahem, I.; Zhao, G. -L.; Eriksson, L.;
Cordova, A. Tetrahedron Lett. 2006, 47, 8547.
(16) (a) Massah, A. R.; Dabagh, M.; Shahidi, S.; Naghash, H. J.;
Momeni, A. R.; Aliyan, H. J. Iran. Chem. Soc. 2009, 6, 405. (b) Hajipour,
A. R.; Zarei, A.; Ruoho, A. E. Tetrahedron Lett. 2007, 48, 2881.
(c) Eshghi, H.; Rahimizadeh, M.; Saberi, S. Chin. Chem. Lett. 2008,
19, 1063. (d) Zarei, A.; Hajipour, A. R.; Khazdooz, L.; Mirjalili, B. F.;
Zahmatkesh, S. J. Mol. Catal. A: Chem. 2009, 301, 39.
(17) (a) Nandi, G. C.; Samai, S.; Kumar, R.; Singh, M. S. Tetrahe-
dron 2009, 65, 7129. (b) Nandi, G. C.; Samai, S.; Kumar, R.; Singh, M. S.
Tetrahedron Lett. 2009, 50, 7220. (c) Kumar, R.; Raghuvanshi, K.;
Verma, R. K.; Singh, M. S. Tetrahedron Lett. 2010, 51, 5933. (d) Verma,
G. K.; Raghuvanshi, K.; Verma, R. K.; Dwivedi, P.; Singh, M. S.
Tetrahedron 2011, 67, 3698.
Org. Lett., Vol. 13, No. 14, 2011
3763