N-Arylcarbonylpseudoprolines as Tunable Chiral Derivatizing Agents
128.2, 126.2, 95.5, 66.8, 60.6, 24.7, 23.8 ppm. HRMS(FAB): calcd.
for C13H16NO4 [M + H]+ 250.1079; found 250.1078.
Acknowledgments
(S)-3-Benzoyl-2,2-dimethyloxazolidine-4-carboxylic Acid [(S)-3a]:[7]
The procedure described for (R)-3a was followed, except that l-
serine methyl ester hydrochloride was used instead of d-serine
methyl ester hydrochloride. The spectroscopic data were virtually
identical to those of (R)-3a except [α]2D1 = –118 (c = 0.5, in MeOH).
This work was supported by the Ministry of Education, Science
and Technology/National Research Foundation of Korea (grant
no. 2010–0000176) and the Priority Research Centers Program
(grant no. 2010–0020209).
(R)-3-(2-Naphthoyl)-2,2-dimethyloxazolidine-4-carboxylic
[(R)-3b]: The procedure described for (R)-3a was followed except
Acid
[1]
a) J. M. Seco, E. Quiñoá, R. Riguera, Chem. Rev. 2004, 104,
17–117; b) N. Harada, Chirality 2008, 20, 691–723; c) T. J.
Wenzel, J. D. Wilcox, Chirality 2003, 15, 256–270; d) T. J. Wen-
zel, C. D. Chisholm, Chirality 2011, 23, 190–214; e) T. J. Wen-
zel, Discrimination of Chiral Compounds Using NMR Spec-
troscopy, Wiley-Interscience, Hoboken, 2007.
a) J. A. Dale, H. S. Mosher, J. Am. Chem. Soc. 1973, 95, 512–
519; b) I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J.
Am. Chem. Soc. 1991, 113, 4092–4096.
that 2-naphthoyl chloride was used instead of benzoyl chloride.
N-(2-Naphthoyl)-D
-serine Methyl Ester: Yield 91%. [α]2D3 = –28 (c
1
= 0.5 in MeOH). H NMR (400 MHz, CDCl3): δ = 8.36 (s, 1 H),
3
7.86–7.93 (m, 4 H), 7.52–7.60 (m, 2 H), 7.29 [d, J(H,H) = 6.8 Hz,
1 H], 4.93–4.96 (m, 1 H, α-CH), 4.11–4.14 (m, 2 H, β-CH2), 3.85
(s, 3 H, OCH3), 2.71 [t, 3J(H,H) = 6.0 Hz, 1 H] ppm. 13C NMR
(100 MHz, CDCl3): δ = 171.2, 167.9, 134.9, 132.4, 130.5, 129.0,
128.5, 127.9, 127.8, 127.7, 126.8, 123.5, 63.3, 55.3, 52.8 ppm.
MS(ESI): m/z = 274.4 [M + H]+.
[2]
[3]
[4]
B. M. Trost, J. L. Belletire, S. Godleski, P. G. Mcdougal, J. M.
Balkovec, J. J. Baldwin, M. E. Christy, G. S. Ponticello, S. L.
Varga, J. P. Springer, J. Org. Chem. 1986, 51, 2370–2374.
(R)-3b Methyl Ester: Yield 85%. [α]2D3 = +159 (c = 0.5 in MeOH).
1H NMR (400 MHz, CDCl3): δ = 7.84–7.87 (m, 4 H), 7.52–7.55
(m, 2 H), 7.45–7.47 (m, 1 H), 4.48 (br. s, 1 H, α-CH), 4.25 [dd,
a) J. M. Seco, S. K. Latypov, E. Quiñoá, R. Riguera, Tetrahe-
dron 1997, 53, 8541–8564; b) J. M. Seco, E. Quiñoá, R. Rig-
uera, Tetrahedron 1999, 55, 569–584; c) T. Takahashi, A. Fuku-
ishima, Y. Tanaka, Y. Takeuchi, K. Kabuto, C. Kabuto, Chem.
Commun. 2000, 787–788; d) R. Garcia, J. M. Seco, S. A. Vaz-
quez, E. Quiñoá, R. Riguera, J. Org. Chem. 2002, 67, 4579–
4589; e) Y. Takeuchi, H. Fujisawa, R. Noyori, Org. Lett. 2004,
6, 4607–4610; f) T. Ohtaki, K. Akasaka, C. Kabuto, H. Ohrui,
Chirality 2005, 17, S171–S176; g) Y. Kasai, A. Sugio, S. Sekigu-
chi, S. Kuwahara, T. Matsumoto, M. Watanabe, A. Ichikawa,
N. Harada, Eur. J. Org. Chem. 2007, 1811–1826; h) S. Porto,
J. M. Seco, J. F. Espinosa, E. Quiñoá, R. Riguera, J. Org.
Chem. 2008, 73, 5714–5722; i) V. Leiro, J. M. Seco, E. Quiñoá,
R. Riguera, Chem. Asian J. 2010, 5, 2106–2112; j) T. R. Hoye,
S. E. Erickson, S. L. Erickson-Birkedahl, C. R. H. Hale, E. C.
Izgu, M. J. Mayer, P. K. Notz, M. K. Renner, Org. Lett. 2010,
12, 1768–1771.
3
2J(H,H) = 9.2, J(H,H) = 6.7 Hz, 1 H, β-CH], 4.12 [dd, 2J(H,H) =
3
9.2, J(H,H) = 3.0 Hz, 1 H, β-CH], 3.53 (s, 3 H, OCH3), 1.87 (s, 3
H, gem-CH3), 1.78 (s, 3 H, gem-CH3) ppm. 13C NMR (100 MHz,
CDCl3): δ = 170.8, 168.6, 134.8, 133.5, 132.5, 128.5, 128.3, 127.8,
127.1, 126.8, 125.6, 123.4, 96.9, 67.0, 61.2, 52.6, 24.7, 24.1 ppm.
MS(ESI): m/z = 314.5 [M + H]+.
(R)-3b: Yield 95%; m.p. 180–184 °C. [α]2D2 = +180 (c = 0.5 in
1
MeOH). H NMR (400 MHz, [D6]DMSO): δ = 13.0 (br. s, 1 H),
7.93–8.00 (m, 4 H), 7.55–7.60 (m, 2 H), 7.49 [dd, 3J(H,H) = 8.4,
4J(H,H) = 1.5 Hz, 1 H], 4.62–4.63 (m, 1 H, α-CH), 4.28 [dd,
3
2J(H,H) = 9.0, J(H,H) = 7.0 Hz, 1 H, β-CH], 4.01 [dd, 2J(H,H) =
9.0, 3J(H,H) = 2.9 Hz, 1 H, β-CH], 1.72 (s, 3 H, gem-CH3), 1.66
(s, 3 H, gem-CH3) ppm. 13C NMR (100 MHz, [D6]DMSO): δ =
171.9, 167.7, 135.0, 132.9, 132.1, 128.4, 127.9, 127.7, 127.1, 126.7,
125.6, 124.1, 95.6, 66.8, 60.6, 24.7, 24.0 ppm. HRMS(FAB): calcd.
for C17H18NO4 [M + H]+: 300.1236; found 300.1238.
[5]
Y. J. Shim, K. Choi, Org. Lett. 2010, 12, 880–882.
[6] a) P. Dumy, M. Keller, D. E. Ryan, B. Rohwedder, T. Wöhr,
M. Mutter, J. Am. Chem. Soc. 1997, 119, 918–925; b) D. Skrop-
eta, K. A. Jolliffe, P. Turner, J. Org. Chem. 2004, 69, 8804–8809;
c) H. Jamet, M. Jourdan, P. Dumy, J. Phys. Chem. B 2008, 112,
9975–9981; d) G. Chaume, O. Barbeau, P. Lesot, T. Brigaud,
J. Org. Chem. 2010, 75, 4135–4145; e) K. A. Fairweather, N.
Sayyadi, I. J. Luck, J. K. Clegg, K. A. Jolliffe, Org. Lett. 2010,
12, 3136–3139.
[7] a) Y. Matsumura, Y. Shirakawa, Y. Satoh, M. Umino, T.
Tanaka, T. Maki, O. Onomura, Org. Lett. 2000, 2, 1689–1691;
b) G. N. Wanyoike, O. Onomura, T. Maki, Y. Matsumura, Org.
Lett. 2002, 4, 1875–1877; c) Y. Matsumura, G. N. Wanyoike,
O. Onomura, T. Maki, Electrochim. Acta 2003, 48, 2957–2966.
[8] SpartanЈ06 (Wavefunction, Inc.) was used for the calculation.
A Monte Carlo conformation search was performed by using
the semi-empirical AM1 model to find the lowest energy con-
formation, which was then used as an initial structure for the
ab initio geometry optimization (RHF/6-31G**).
(S)-3-(2-Naphthoyl)-2,2-dimethyloxazolidine-4-carboxylic Acid [(S)-
3b]: The procedure described for (R)-3a was followed except that
l-serine methyl ester hydrochloride and 2-naphthoyl chloride were
used instead of d-serine methyl ester hydrochloride and benzoyl
chloride, respectively. The spectroscopic data were virtually iden-
tical to those of (R)-3b except [α]2D2 = –178 (c = 0.5 in MeOH).
General Procedure for the Preparation of ΨPro Esters: (S)- or
(R)-3, bis(2-oxo-3-oxazolidinyl)phosphinic chloride (BOP-Cl,
1.5 equiv.), and 4-(dimethylamino)pyridine (0.1 equiv.) were dis-
solved in DMF. To the solution was added DIEA (2.5 equiv.) fol-
lowed by a secondary alcohol (1.0 equiv.). After stirring overnight,
the mixture was diluted with EtOAc and washed with brine. The
organic layer was dried with anhydrous Na2SO4 and concentrated
under reduced pressure. The residue was purified by SiO2
chromatography.
[9] T. Takahashi, H. Kameda, T. Kamei, M. Ishizaki, J. Fluorine
Chem. 2006, 127, 760–768.
[10] NMR Solvent Data Chart, Cambridge Isotope Laboratories,
Inc., Andover, MA.
Supporting Information (see footnote on the first page of this arti-
cle): Copies of the NMR spectra and characterization data for
pseudoprolines and their esters.
Received: February 16, 2011
Published Online: April 19, 2011
Eur. J. Org. Chem. 2011, 2920–2923
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2923