3372
P. Singh et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3367–3372
10. Ryder, N. S. Br. J. Dermatol. 1992, 126, 2.
11. Bossche, H. V. D.; Willemsens, G.; Cools, W.; Lauwers, W. F. J.; Jeune, L. L.
Chem.-Biol. Int. 1978, 21(1), 59.
12. Pfaller, M.; Riley, J. Eur. J. Clin. Microbiol. Infect. Dis. 1992, 11, 152.
13. Kartsonis, N. A.; Nielsen, J.; Douglas, C. M. Drug Resistance Updates 2003, 6(4),
197.
14. Trafford, J. A. P.; Maclaren, D. M.; Lillicrap, D. A.; Barnes, R. D. S.; Houston, J. C.;
Knox, R. The Lancet 1962, 279(7273), 987.
CH2), 27.18 (ꢀve, CH2), 45.89 (ꢀve, NCH2), 46.71 (ꢀve, NCH2), 47.38 (ꢀve,
NCH2), 109.84 (+ve, ArCH), 113.46 (absent, ArC), 122.71 (+ve, ArCH), 123.26
(+ve, ArCH), 123.96 (+ve, ArCH), 126.87 (absent, ArC), 136.57 (absent, ArC),
138.73 (+ve, ArCH), 164.72 (absent, C@O), 184.91 (absent, C@O); Anal. Calcd
for C32H34N4O4: C, 71.35; H, 6.36; N, 10.40. Found C, 71.12; H, 6.11; N, 10.00.
MS (FAB) 539 (M++1).
Compound 7d: White solid, Yield: 49%; mp 184 °C. IR (KBr, cmꢀ1): 1628 (C@O),
1681 (C@O), 3123 (N–H), 3349 (N–H); UV (THF + HEPES buffer) kmax (e) 220
15. Grassi, G. G.; Grassi, C. J. Antimicrob. Chemother. 1993, 32, 87.
16. Mazzei, T.; Mini, E.; Noveffi, A.; Periti, P. J. Antimicrob. Chemother. 1993, 31, 1.
17. Livermore, D. M. J. Antimicrob. Chemother. 2003, 51, ii9.
18. Polak, A.; Wain, W. H.; chemotherapy 1977, 23, 243.
19. Ellie, J. C.; Goldstein, M. D. J. Am. Med. 1987, 82, 3.
20. Gleckman, R.; Blagg, N.; Joubert, D. W. Pharmacotheraphy 1981, 1, 14.
21. Strushkevich, N.; Usanov, S. A.; Park, H.-W. J. Mol. Biol. 2010, 397, 1067.
22. Cody, V.; Pace, J. Acta Crystallogr., Sect. D 2011, 67, 1.
23. Laponogov, I.; Sohi, M. K.; Veselkov, D. A.; Pan, X.-S.; Sawhney, R.; Thompson,
A. W.; McAuley, K. E.; Fisher, L. M.; Sanderson, M. R. Nat. Struct. Mol. Biol. 2009,
16, 667.
(26,220), 259 (19,660), 330 (17,400); 1H NMR (300 MHz, CDCl3): d 4.54 (d, 4H,
J = 6 Hz, 2 ꢁ NCH2), 5.33 (s, 4H, 2 ꢁ NCH2), 7.11 (s, 4H, ArH), 7.26–7.27 (m, 4H,
ArH), 7.30–7.35 (m, 12H, ArH), 7.84 (br s, 2H, NH), 8.40 (d, 2H, J = 7.5 Hz, ArH),
9.07 (s, 2H, ArH); 13C NMR (normal/DEPT-135) (75 MHz, CDCl3): d 43.33 (ꢀve,
NCH2), 50.73 (ꢀve, NCH2), 110.49 (+ve, ArCH), 112.46 (absent, ArC), 122.75
(+ve, ArCH), 123.58 (+ve, ArCH), 124.11 (+ve, ArCH), 127.62 (+ve, ArCH), 127.67
(absent, ArC), 127.74 (+ve, ArCH), 128.79 (+ve, ArCH), 135.63 (absent, ArC),
136.38 (absent, ArC), 137.37 (absent, ArC), 141.54 (+ve, ArCH), 162.32 (absent,
C@O), 179.93 (absent, C@O); Anal. Calcd for C42H34N4O4: C, 76.58; H, 5.20; N,
8.51. Found C, 76.80; H, 5.38; N, 8.34. MS (FAB) 659 (M++1).
34. Roncero, C.; Duran, A. J. Bacteriol. 1985, 163, 1180.
24. Leboho, T. C.; Michael, J. P.; van Otterlo, W. A. L.; van Vuuren, S. F.; de Koning, C.
B. Bioorg. Med. Chem. Lett. 2009, 19, 4948.
35. Tukmachev, V. A.; Nedospasova, L. V.; Zaslavski˘ı, B.; Rogozhin, S. V. Biofizika
1979, 24, 55.
25. Hilmy, K. M. H.; Khalifa, M. M. A.; Hawata, M. A. A.; Keshk, R. M. A.; El-Torgman,
A. A. Eur. J. Med. Chem. 2010, 45, 5243.
26. Rauf, A.; Sharma, S.; Gangal, S. Chin. Chem. Lett. 2008, 19, 5.
27. Parashar, B.; Bharadwaj, S.; Sahu, A.; Sharma, V. K.; Punjabi, P. B. Int. J.
ChemTech Res. 2010, 2, 1454.
36. Evaluation of IC50: Ten serial dilutions of the compounds and the corresponding
solvent control were made with synthetic dextrose minimal medium (SDMM)
in duplicate in 96-well flat bottom transparent cell culture ELISA plate. Candida
cells which were already grown in culture medium for 24 h, at 30 °C were
resuspended in a 0.9% saline solution to give an optical density of 0.1 at 600 nm
28. Nozaki, Y.; Tanford, C. J. Biol. Chem. 1971, 246, 2211.
29. Gupta, L.; Talwar, A.; Chauhan, P. M. S. Curr. Med. Chem. 2007, 14, 1789.
30. Gunasekerap, S. P.; McCarthy, P. J.; Kelly-Borges, M. J. Nat. Prod. 1994, 57,
1437.
(OD600). The cells were then diluted 100 times in SDM medium. 100 ll of
diluted cells was added to each well except column 11, which was our media
control to monitor contamination during the study. Column 12 contained the
growth medium and the fungal cells only to serve as positive control. The plate
was incubated at 30 °C for 48 h and OD600 was monitored using a micro plate
reader. The percent fungal growth inhibition of the compounds were
determined with respect to positive control after subtracting the percent
inhibition by the solvent control. The IC50 values were determined by plotting
graph of percent inhibition versus concentration of the compound using
Graphpad Prism software.
31. Faul, M. M.; Winneroski, L. L.; Krumrich, C. A. J. Org. Chem. 1998, 63, 6053.
32. Julia, M.; Manoury, P. Bull. Soc. Chim. 1964, 8, 1946.
33. Experimental data for selected compounds: Compound 4f: Light brown solid,
Yield: 29%; mp 165 °C. IR (KBr, cmꢀ1): 1626 (C@O); UV (THF + HEPES buffer)
kmax (e
) 224 (17,320), 251 (22,620), 314 (18,160); 1H NMR (300 MHz, CDCl3): d
1.90 (m, 12H, 6 ꢁ CH2), 3.57–3.65 (m, 8H, 4 ꢁ CH2 of pyrrolidine), 4.11 (m, 4H,
2 ꢁ CH2), 7.24–7.33 (m, 6H, ArH), 8.08 (s, 2H, ArH), 8.35–8.39 (m, 2H, ArH); 13
C
37. Robert, J. F.; Valerie, L. H. Antimicrob. Agents Chemother. 1984, 26(5), 660.
38. ArgusLab, Thompson, M. A. Planaria Software LLC, Seattle, WA 98155.
NMR (normal/DEPT-135) (75 MHz, CDCl3): d 23.86 (ꢀve, CH2), 26.24 (ꢀve,