Crystal Growth & Design
ARTICLE
Crystallization of H1-C-DME and H1-C-Aac. H1 (50.0 mg, 0.114
mmol) and 18-crown-6 (45.0 mg, 0.171 mmol) were dissolved in
dimethoxyethane (5.0 mL). Slow evaporation of the resultant clear
solution over a period of 4À5 days led to rectangular-shaped crystals.
Filtration followed by washing with a CHCl3Àpet. ether (50:50)
mixture led to isolation of the compound in 70À75% yield based on
host H1. The crystals were characterized by TGA, DSC, and X-ray
crystallography.
Berlin, 1998: Vol. 198. (c) Crystal Engineering: From Molecules and
Crystals to Materials; Braga, D., Orpan, A. G., Ed.; NATO ASI Series;
Kluwer: Dordecht, The Netherlands, 1999. (d) Steed, J. W., Atwood, J. L.,
Eds.; Supramolecular Chemistry; Wiley: New York, 2000. (e) Encyclopedia of
Supramolecular Chemistry; Atwood, J. L., Steed, J. W., Eds.; Marcel Decker:
New York, 2004; Vols. I and II. (f) Bradshaw, D.; Claridge, J. B.; Cussen,
E. J.; Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res. 2005, 38, 273.
(2) For hydrogen-bonded self-assembly, see:(a) Etter, M. C. Acc.
Chem. Res. 1990, 23, 120. (b) Desiraju, G. R. Angew. Chem., Int. Ed. Engl.
1995, 34, 2311.(c) Comprehensive Supramolecular Chemistry, Solid-State
Supramolecular Chemistry: Crystal Engineering; MacNicol, D. D., Toda,
F., Bishop, R., Eds.; Pergamon: New York, 1996; Vol. 6. (d) Nangia, A.;
Desiraju, G. R. Top. Curr. Chem. 1998, 198, 57. (e) Steiner, T. Angew.
Chem., Int. Ed. 2002, 41, 48. (f) Laliberte, D.; Maris, T.; Wuest, J. D.
J. Org. Chem. 2004, 69, 1776. (g) Hosseini, M. W. Acc. Chem. Res. 2005,
38, 313. (h) Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Coord. Chem. Rev.
2008, 252, 825. (i) Helzy, F.; Maris, T.; Wuest, J. D. Cryst. Growth Des.
2008, 8, 1547. For metal-assisted self-assembly, see:(j) Hoskins, B. F.;
Robson, R. J. Am. Chem. Soc. 1989, 111, 5962. (k) Moulton, B.;
Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. (l) Eddaoudi, M.; Moler,
D. B.; Li, H.; Chen, B.; Reineke, T. M.; Keeffe, M. O.; Yaghi, O. M. Acc.
Chem. Res. 2001, 34, 319. (m) Kitagawa, S.; Kitaura, R.; Noro, S. Angew.
Chem., Int. Ed. 2004, 43, 2334. (n) Fujita, M.; Tominaga, M.; Hori, A.;
Therrien, B. Acc. Chem. Res. 2005, 38, 369. (o) Perry, J. J.; Perman, J. A.;
Zaworotko, M. J. Chem. Soc. Rev. 2009, 38, 1400.
A similar procedure was used for the synthesis of H1-C-Aac. In this
case, ammonium acetate in water was employed; yield of the inclusion
compound was 80À85% based on host H1.
Preparation of H2-C-W, H3-C-B-Et, and H4-C-Tol. 18-Crown-
6 (45.0 mg, 0.171 mmol) dissolved in EtOAc (2.0 mL) was slowly added
to a solution of H2 (50.0 mg, 0.114 mmol) in dioxane (3.0 mL). Slow
evaporation of the resultant clear solution over a period of 5À7 days led
to square-shaped crystals in a quantitative yield.
A similar procedure was used for the preparation of H3-C-B-Et and
H4-C-Tol. In all cases, the appropriate guest and the solvent were used
for crystallization.
X-ray Crystal Structure Determinations. A good quality crystal
in each case was mounted in a glass capillary and cooled to 100 K, and
the intensity data were collected on a Bruker Nonius SMART APEX
CCD detector system with Mo-sealed Siemens ceramic diffraction tube
(λ = 0.71073) and a highly oriented graphite monochromator operating
at 50 kV and 30 mA. The data were collected on a hemisphere mode and
processed with Bruker SAINTPLUS. Empirical absorption correction
was made using Bruker SADABS. The structure was solved in each case
by Direct Methods using SHELXTL package and refined by full matrix
least-squares method based on F2 using SHELX97 program. All the non-
hydrogen atoms were refined anisotropically. The hydrogen atoms were
included in their ideal positions with fixed isotropic U values and were
allowed to ride with their respective non-hydrogen atoms. The experi-
mental details of crystal data, intensity measurements, structure solution,
and refinement are presented in Table 2.
(3) (a) Separation and Reactions in Organic Supramolecular Chemis-
try; Toda, F., Bishop, R., Eds.; Wiley: New York, 2004. (b) Eddaoudi, M.;
Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M.
Science 2002, 295, 469. (c) Sudik, A. C.; Wong-Foy, A. G.; O’Keeffe, M.;
Yaghi, O. M. Angew. Chem., Int. Ed. 2006, 45, 2528.
(4) For gas adsorption by organic materials, see:(a) Atwood, J. L.;
Barbour, L. J.; Jerga, A.; Schottel, B. L. Science 2002, 298, 1000.
(b) Enright, G. D.; Udachin, K. A.; Moudrakovski, I. L.; Ripmeester, J. A.
J. Am. Chem. Soc. 2003, 125, 9896. (c) Lim, S.; Kim, H.; Selvapalam, N.;
Kim, K. J.; Cho, S. J.; Seo, G.; Kim, K. Angew. Chem., Int. Ed. 2008,
47, 3352. (d) Msayib, K. J.; Book, D.; Budd, P. M.; Chaukura, N.; Harris,
K. D. M.; Helliwell, M.; Tedds, S.; Walton, A.; Warren, J. E.; Xu, M.;
McKeown, N. B. Angew. Chem., Int. Ed. 2009, 48, 3273. (e) Sozzani, P.;
Comotti, A.; Bracco, S.; Simonutti, R. Angew. Chem., Int. Ed. 2004,
43, 2792. (f) Comotti, A.; Bracco, S.; Ferretti, L.; Mauri, M.; Simonutti,
R.; Sozzani, P. Chem. Commun. 2007, 350. For gas absorption by
metalÀorganic materials, see:(g) Cussen, E. J.; Claridge, J. B.; Rosseinsky,
M. J.; Kepert, C. J. J. Am. Chem. Soc. 2002, 124, 9574. (h) Zhao, X.; Xiao,
B.; Fletcher, A. J.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J. Science
2004, 306, 1012. (i) Maji, T. K.; Matsuda, R.; Kitagawa, S. Nat. Mater.
2007, 6, 142. (j) Fꢀerey, G. Chem. Soc. Rev. 2008, 37, 191. (k) Zaworotko,
M. J. Nature 2008, 451, 410. (l) Sava, D. F.; Kravtsov, V.; Nouar, F.;
Wojtas, L.; Eubank, J. F.; Eddaoudi, M. J. Am. Chem. Soc. 2008, 130,
3768. (m) Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem.
Soc. 2008, 130, 10870. (n) Murray, L. J.; Dincꢁa, M.; Long, J. R. Chem. Soc.
Rev. 2009, 38, 1294. (o) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.;
Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.;
Yaghi, O. M. Science 2010, 239, 424. (p) Zheng, B.; Bai, J.; Duan, J.;
Wojtas, L.; Zaworotko, M. J. J. Am. Chem. Soc. 2011.
’ ASSOCIATED CONTENT
S
Supporting Information. X-ray crystallographic infor-
b
1
mation files (CIF), details of refinement, H NMR spectral
reproductions and TGA profiles for the multicomponent crystals
are available. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: moorthy@iitk.ac.in (J.N.M.); venugopalanp@yahoo.com
(P.V.).
’ ACKNOWLEDGMENT
(5) (a) Herbstein, F. H. In Comprehensive Supramolecular Chemistry;
Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vo€gtle, F., Eds.;
Pergamon: Oxford, 1996; Vol. 6, p 61. (b) Ermer, O.; Neud€orfl, J. Helv.
Chim. Acta 2001, 84, 1268.
J.N.M. is thankful to the Department of Science and Technol-
ogy (DST), India, for generous funding. P.N. and A.B. thank
UGC and CSIR, respectively, for their research fellowships.
(6) (a) Herbstein, F. H.; Kapon, M.; Reisner, G. M. J. Inclusion
Phenom. 1987, 5, 211. (b) Kolotuchin, S. V.; Fenlon, E. E.; Wilson, S. R.;
Loweth, C. J.; Zimmerman, S. C. Angew. Chem., Int. Ed. 1995, 34, 2654.
(c) Ermer, O.; Neud€orfl, J. Chem. —Eur. J. 2001, 7, 4961.
(7) Moorthy, J. N.; Natarajan, P. Chem.—Eur. J. 2010, 16, 7796.
(8) For molecular Russian dolls, see:(a) Kamitori, S.; Hirotsu, K.;
Higuchi, T. J. Am. Chem. Soc. 1987, 109, 2409. (b) Atwood, J. L.;
Barbour, L. J.; Hardie, M. J.; Lygris, E.; Raston, C. L.; Webb, H. R.
CrystEngComm 2001, 3, 18. (c) Dalgarno, S. J.; Fisher, J.; Raston, C. L.
Chem.—Eur. J. 2006, 12, 2772, and references therein. For ring-in-ring
’ DEDICATION
This paper is dedicated to Prof. K. Venkatesan on the occasion of
his 80th birthday.
’ REFERENCES
(1) (a) Desiraju, G. R. Crystal Engineering: The Design of Organic
Solids; Elsevier: Amsterdam, The Netherlands, 1989. (b) Design of
Organic Solids; Weber, E., Ed.; Topics in Current Chemistry; Springer:
3416
dx.doi.org/10.1021/cg200074z |Cryst. Growth Des. 2011, 11, 3406–3417