376
D. Holschumacher et al. · Sulfur and Selenium Activation by Frustrated NHC/B(C6F5)3 Lewis Pairs
5a: Yield 362 mg (89 %); an accurate elemental anal- an Oxford Diffraction Nova A diffractometer using mirror-
ysis could not be obtained due to the instability at r. t. – focussed CuKα radiation. Absorption corrections were ap-
1H NMR (300 MHz, C6D6): δ = 1.15 (s,18H, CH3), 6.11 plied using the multi-scan method. Structures were solved
(s, 2H, CH). – 13C NMR (75 MHz, C6D6): δ = 29.2 (CH3), with routine Direct Methods and refined on F2 using the pro-
63.2 (C(CH3)3), 118.4 (CH). – 19F NMR (376 MHz, C6D6): grams SHELXS/L-97 [39]. Hydrogen atoms were included
δ = −128.9 (br s, 6F, o-C6F5), −151.3 (br s, 3F, p-C6F5), using rigid methyl groups or a riding model.
−163.0 (br s, 6F, m-C6F5). – 11B NMR (96 MHz, C6D6):
δ = 9.6 (br).
Exceptions and special features: In compound 3a one tert-
butyl group (atoms C9ꢀ, C10ꢀ, C11ꢀ) is disordered over two
positions, while in the asymmetric unit of 3b one pentane
molecule disordered over two positions was found. Several
restraints (ISOR, DELU, SAME, SADI and SIMU) were
used in order to improve refinement stability of the disor-
dered moieties. One disordered pentane molecule and one
disordered half molecule of toluene were found in the asym-
metric unit of 5b, but could not be refined satisfactorily. For
this reason, the program SQUEEZE (part of the PLATON pro-
gram suite [40]) was used to remove mathematically the ef-
fects of the solvents.
5b: Yield 357 mg (87 %); an accurate elemental analysis
could not be obtained due to the instability at r. t. Crystals
of 5b w◦ere obtained from a mixture of toluene and pentane
at −35 C. – 1H NMR (300 MHz, C6D6): δ = 1.4 (s,18H,
CH3), 2.6 (s, 4H, N2(CH2)2). – 13C NMR (75 MHz, C6D6):
δ = 28.6 (CH3), 45.3 (CH2), 59.3 (C(CH3)3), 135.9 (dm,
m-C6F5), 149.9 (dm, o-C6F5), 174.9 (CSeB). – 19F NMR
(376 MHz, C6D6): δ = −130.6 (br. s, 6F, o-C6F5), −156.8
(br s, 3F, p-C6F5), −163.8 (br s, 6F, m-C6F5). – 11B NMR
(96 MHz, C6D6): δ = 24.2 (br).
CCDC 813555 (3a), 813556 (3b), 813557 (5b) contain
the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
X-Ray structure determinations
Crystal data and details of data collection and refine- Crystallographic Data Centre via www.ccdc.cam.ac.uk
ment are summarised in Table 1. Data were registered on /data request/cif.
[1] G. C. Welch, R. R. San Juan, J. D. Masuda, D. W.
Stephan, Science 2006, 314, 1124 – 1128.
[2] D. W. Stephan, Org. Biomol. Chem. 2008, 6, 1535 –
1539.
Chem. 2010, 122, 8567 – 8569; Angew. Chem. Int. Ed.
2010, 49, 8389 – 8391.
[14] S. J. Geier, D. W. Stephan, Chem. Commun. 2010, 46,
1026 – 1028.
[3] D. W. Stephan, Dalton Trans. 2009, 3129 – 3136.
[4] D. W. Stephan, G. Erker, Angew. Chem. 2010, 122, 50 –
81; Angew. Chem. Int. Ed. 2010, 49, 46 – 76.
[5] A. L. Kenward, W. E. Piers, Angew. Chem. 2008, 120,
38 – 42; Angew. Chem. Int. Ed. 2008, 47, 38 – 41.
[6] G. N. Lewis, Valence and The Structure of Atoms and
Molecules, Chemical Catalog, New York, 1923.
[7] W. B. Jensen, The Lewis Acid-Base Concepts, Wiley-
Interscience, New York, 1980.
[8] S. E. Denmark, G. L. Beutner, Angew. Chem. 2008,
120, 1584 – 1663; Angew. Chem. Int. Ed. 2008, 47,
1560 – 1638.
[9] T. A. Rokob, A. Hamza, A. Stirling, I. Pa´pai, J. Am.
Chem. Soc. 2009, 131, 2029 – 2036.
[10] D. Holschumacher, T. Bannenberg, C. G. Hrib, P. G.
Jones, M. Tamm, Angew. Chem. 2008, 120, 7538 –
7542; Angew. Chem. Int. Ed. 2008, 47, 7428 –
7432.
[11] D. Holschumacher, C. Taouss, T. Bannenberg, C. G.
Hrib, C. G. Daniliuc, P. G. Jones, M. Tamm, Dalton
Trans. 2009, 6927 – 6929.
[12] M. A. Dureen, G. C. Welch, T. M. Gilbert, D. W.
Stephan, Inorg. Chem. 2009, 48, 9910 – 9917.
[13] B. Ine´s, S. Holle, R. Goddard, M. Alcarazo, Angew.
[15] D. Holschumacher, T. Bannenberg, K. Ibrom, C. G.
Daniliuc, P. G. Jones, M. Tamm, Dalton Trans. 2010,
39, 10590 – 10592.
[16] W. A. Herrmann, C. Ko¨cher, Angew. Chem. 1997, 109,
2256 – 2282; Angew. Chem., Int. Ed. Engl. 1997, 36,
2162 – 2187.
[17] A. J. Arduengo III, Acc. Chem. Res. 1999, 32, 913 –
921.
[18] F. E. Hahn, M. C. Jahnke, Angew. Chem. 2008, 120,
3166 – 3216; Angew. Chem. Int. Ed. 2008, 47, 3122 –
3172.
[19] T. Dro¨ge, F. Glorius, Angew. Chem. 2010, 122, 7094 –
7107; Angew. Chem. Int. Ed. 2010, 49, 6940 – 6952.
[20] N. Kuhn, G. Henkel, T. Kratz, Z. Naturforsch. 1993,
48b, 973 – 977.
[21] D. I. Williams, M. R. Fawcett-Brown, R. R. Raye,
D. Van Derveer, Y. T. Pang, R. L. Jones, K. L. Berg-
bauer, Heteroat. Chem. 1993, 4, 409 – 414.
[22] A. Scho¨nberg, E. Singer, W. Stephan, Chem. Ber. 1983,
116, 2068 – 2073.
[23] M. J. Drewitt, M. Niedermann, R. Kumar, M. C. Baird,
Inorg. Chim. Acta 2002, 335, 43 – 51.
[24] G. J. P. Britovsek, J. Ugolotti, A. J. P. White, Organo-
metallics 2005, 24, 1685 – 1691.
Unauthenticated
Download Date | 11/11/15 12:50 PM