Table 1 Optical and electrochemical properties and devise performances
Material
Eoxa/V
Ereda/V
Egb/eV
VOC/V
ISC/mA cmÀ2
FF
PCE (%)
4T dyad
6T dyad
8T dyad
PCBM
0.44
0.33
0.25
À1.11
À1.13
À1.11
À1.16
1.86
1.77
1.73
0.60
0.56
0.51
0.69
3.17
4.79
0.25
0.33
0.46
0.10
0.56
1.11
Half potentials determined by cyclic voltammetry vs. Fc/Fc+
.
Optical band gaps.
a
b
should be improved by introduction of a larger hole transport
part, and this study demonstrates the high potential of
donor–acceptor dyads as photovoltaic materials. Further
optimization of energy levels could enable realization of higher
3,22
VOC and JSC
,
and highly efficient solar cells based on a
single component.
Notes and references
1 S. Gunes, H. Neugebauer and N. S. Sariciftci, Chem. Rev., 2007,
107, 1324–1338.
2 C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia and
S. P. Williams, Adv. Mater., 2010, 22, 3839–3856.
3 H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang,
Y. Yang, L. P. Yu, Y. Wu and G. Li, Nat. Photonics, 2009, 3,
649–653.
4 G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger,
Science, 1995, 270, 1789–1791.
5 L. H. Nguyen, H. Hoppe, T. Erb, S. Gunes, G. Gobsch and
N. S. Sariciftci, Adv. Funct. Mater., 2007, 17, 1071–1078.
6 X. N. Yang, J. K. J. van Duren, M. T. Rispens, J. C. Hummelen,
R. A. J. Janssen, M. A. J. Michels and J. Loos, Adv. Mater., 2004,
16, 802–806.
7 D. Chirvase, J. Parisi, J. C. Hummelen and V. Dyakonov,
Nanotechnology, 2004, 15, 1317–1323.
8 M. Maggini, G. Possamai, E. Menna, G. Scorrano, N. Camaioni,
G. Ridolfi, G. Casalbore-Miceli, L. Franco, M. Ruzzi and
C. Corvaja, Chem. Commun., 2002, 2028–2029.
9 T. Nishizawa, K. Tajima and K. Hashimoto, J. Mater. Chem.,
2007, 17, 2440–2445.
10 T. Nishizawa, H. K. Lim, K. Tajima and K. Hashimoto, Chem.
Commun., 2009, 2469–2471.
Fig. 3 (a) EQE spectra of the dyad devices. (b) J–V curves of the
dyad devices.
11 L. J. Bu, X. Y. Guo, B. Yu, Y. Qu, Z. Y. Xie, D. H. Yan,
Y. H. Geng and F. S. Wang, J. Am. Chem. Soc., 2009, 131,
13242–13243.
12 B. Walker, A. B. Tomayo, X. D. Dang, P. Zalar, J. H. Seo,
A. Garcia, M. Tantiwiwat and T. Q. Nguyen, Adv. Funct. Mater.,
2009, 19, 3063–3069.
Previously, we reported two similar molecular designs of
dyads based on oligothiophene (OT) and OPV. In comparison
with these molecules, the low band gap properties of 4T–8T
led to broader absorption and better matching with the solar
spectrum, resulting in the increase of JSC from 0.93 in OT to
4.79 mA cmÀ2 in 8T. At the same time, by increasing the
number of thiophene units in the DPP dyads, FF was
improved to 0.46, which is comparable with that of highly
crystalline OPV dyad molecules (0.44). These comparisons
indicate the possibility of enhancing both the light absorption
properties and the charge transport properties of dyads
through careful molecular design.
13 T. Nishizawa, K. Tajima and K. Hashimoto, Nanotechnology,
2008, 19, 424017–424024.
14 A. Iqbal, M. Jost, R. Kirchmayr, J. Pfenninger, A. Rochat and
O. Wallquist, Bull. Soc. Chim. Belg., 1988, 97, 615–643.
15 Z. M. Hao and A. Iqbal, Chem. Soc. Rev., 1997, 26, 203–213.
16 J. C. Bijleveld, V. S. Gevaerts, D. Di Nuzzo, M. Turbiez,
S. G. J. Mathijssen, D. M. de Leeuw, M. M. Wienk and
R. A. J. Janssen, Adv. Mater., 2010, 22, E242–E246.
17 E. J. Zhou, M. Nakamura, T. Nishizawa, Y. Zhang, Q. S. Wei,
K. Tajima, C. H. Yang and K. Hashimoto, Macromolecules, 2008,
41, 8302–8305.
Atomic force microscopy (AFM) images of the device
surfaces revealed that all the dyad films have featureless flat
surfaces (see ESIw). Therefore, no large-scale segregation
occurs in the films, reflecting the fact that the donor and
acceptor are covalently attached to each other.
18 E. J. Zhou, S. P. Yamakawa, K. Tajima, C. H. Yang and
K. Hashimoto, Chem. Mater., 2009, 21, 4055–4061.
19 A. B. Tamayo, M. Tantiwiwat, B. Walker and T. Q. Nguyen,
J. Phys. Chem. C, 2008, 112, 15543–15552.
20 B. Carsten, F. He, H. J. Son, T. Xu and L. Yu, Chem. Rev., 2011,
111, 1493–1528.
21 The devices with 4T shorted when annealed at 110 1C.
22 S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon,
D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photonics,
2009, 3, 297–303.
In summary, the introduction of a low band gap donor part
into the dyad molecule improved the light-harvesting ability.
The length of the oligothiophene greatly affected charge
transport in the dyad-based solar cells. The performance
23 J. Roncali, Adv. Energy Mater., 2011, 1, 147–160.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6365–6367 6367