H. Türkmen et al. / European Journal of Medicinal Chemistry 46 (2011) 2895e2900
2899
CH2C6H4Cl2), 7.06 (m, 1 H, CH2C6H3Cl2), 4.94 (s, 2 H, CH2C6H3Cl2),
4.19 (m, 2 H, piperidin-H), 3.94 (m, 1 H, piperidin-H), 3.25 (m, 2 H,
administered in increasing doses to groups of 10 male and 10
female animals. Mortalities were recorded within a given period,
and the LD50 was determined with the aid of statistical calculations
(Probit analyses in SPSS for Windows 10.0). In the tests, male and
female Swiss albino mice weighing 20e30 g were used [48,49].
NCH2CH), 1.91e1.44 (m, 6 H, piperidin-H). 13C NMR (CDCl3,
d, ppm):
157.0 (NCH), 135.9, 135.0, 129.8, 129.5, 128.4, 125.4 (CH2C6H3Cl2),
59.7 (NHCH2CH), 53.9 (CH2C6H3Cl2), 48.7, 46.2, 31.9, 25.7, 22.3
(piperidin-C). Anal.Calc. for C14H17N2Cl2Br (M: 364.11): C, 46.18; H,
4.71; N, 7.69. Found: C, 46.19; H, 4.68; N, 7.77%.
Acknowledgement
4.1.7. 2-(4-Cyanobenzyl)-1,5,6,7,8,8a-hexahydroimidazolo[1,5-a]
Financial supports from The Turkish Academy of Sciences
(TUBA) are gratefully acknowledged. We also thank to Hüseyin
Istanbullu at Ege University Pharmacy Department, for his assis-
pyridin-2-ium bromide, 11
Yield: 4.5 g, 94%, m.p.: 82e84 ꢂC. 1H NMR (CDCl3,
d, ppm): 10.03
_
(s, 1 H, NCH), 7.64 (s, 4 H, CH2C6H4CN), 5.07 (s, 2 H, CH2C6H4CN),
4.19 (m, 2 H, piperidin-H), 3.96 (m, 1 H, piperidin-H), 3.33 (m, 2 H,
tance for calculation of logP.
NCH2CH), 1.98e1.49 (m, 6 H, piperidin-H). 13C NMR (CDCl3,
d, ppm):
References
156.6 (NCH), 138.5, 133.2, 129.9, 118.4, 113.1 (CH2C6H4CN), 59.8
(NHCH2CH), 53.9 (CH2C6H4CN), 51.6, 46.3, 31.6, 25.4, 22.4 (piper-
idin-C). Anal. Calc. for C15H18N3Br (M: 320.23): C, 56.26; H, 5.67; N,
13.12. Found: C, 56.30; H, 5.65; N, 13.14%.
[1] L. De Luca, Curr. Med. Chem. 13 (2006) 1e23.
[2] W.A. Herrmann, C. Köcher, Angew. Chem. Int. Ed. Engl. 36 (1997) 2162e2187.
[3] D. Bourissou, O. Guerre, F.P. Gabbai, G. Bertrand, Chem. Rev. 100 (2000) 39e91.
[4] W.A. Herrmann, Angew. Chem. Int. Ed. 41 (2002) 1290e1309.
[5] F.E. Hahn, M.C. Jahnke, Angew. Chem. Int. Ed. 120 (2008) 3166e3216, Angew.
Chem. Int. Ed. 47 (2008) 3122e3172.
4.2. Antimicrobial activity tests
[6] S. Diez-Gonzalez, N. Marion, S.P. Nolan, Chem. Rev. 109 (2009) 3612e3676.
[7] K.M. Hindi, M.J. Panzner, C.A. Tessier, C.L. Cannon, W.J. Youngs, Chem. Rev. 109
(2009) 3859e3884.
In vitro antimicrobial studies were carried out against 10 test
microorganisms (four Gram-positive bacteria: S. aureus (6538/P),
S. epidermidis (ATCC 12228), B. cereus (CCM 99) and M. luteus (ATCC
9341), four Gram-negative bacteria: P. vulgaris (ATCC 6897), E. coli
(ATCC 8739), S. typhimurium (CCM 5445) and K. pneumoniae (CCM
2318)), and two yeasts: C. albicans (ATCC 10231) and C. krusei (ATCC
6258), which were obtained from the Microbiology Department
Culture Collection of Ege University, Faculty of Science.
[8] K.M. Cavell, Dalton Trans. (2008) 6676e6685.
[9] I. Özdemir, B. Çetinkaya, S. Demir, N. Gurbuz, Catal. Lett. 97 (2004) 37e40.
[10] I. Özdemir, Y. Gok, N. Gurbuz, E. Çetinkaya, B. Çetinkaya, Heteroatom Chem.
15 (2004) 419e423.
[11] J. Pernak, K. Sobaszkiewicz, J. Foksowcz-Flaczyk, Chem. Eur. J. 10 (2004)
3479e3485.
[12] J. Cybulski, A. Wisniewska, A. Kulig-Adamiak, L. Lewicka, A. Cieniecka-
Roslonkiewicz, K. Kita, A. Fojutowki, J. Nawrot, K. Materna, J. Pernak, Chem.
Eur. J. 14 (2008) 9305e9311.
[13] J. Pernak, I. Mirska, R. Kmiecik, Eur. J. Med. Chem. 34 (1999) 765e771.
[14] J. Pernak, J. Rogoza, I. Mirska, Eur. J. Med. Chem. 36 (2001) 313e320.
[15] J. Pernak, J.J. Feder-Kubis, A. Cieniecka-Roslonkiewicz, C. Fischmeister,
S.T. Griffin, R.D. Rogers, New J. Chem. 31 (2007) 879e892.
[16] J. Pernak, A. Arndt, B. Brycki, Arch. Pharm. Pharm. Med. Chem. 330 (1997)
253e258.
[17] J. Pernak, I. Goc, I. Mirska, Green Chem. 6 (2004) 323e329.
[18] G. Garg, G.S. Chauhan, R. Gupta, J.H. Ahn, J. Colloid Interf. Sci. 344 (2010)
90e96.
[19] S. Morrisey, B. Pegot, D. Coleman, M.T. Garcia, D. Ferguson, B. Quilty,
N. Gathergood, Green Chem. 11 (2009) 475e483.
[20] M. Petkovic, J. Ferguson, J.A. Bohn, J. Trindade, I. Martins, M.B. Carvalho,
M.C. Letiao, C. Rodrigues, H. Garcia, R. Ferreira, K.R. Seddon, L.P.N. Rebelo,
S. Pereira, Green Chem. 11 (2009) 889e894.
[21] L. Carson, P.K.W. Chau, M.J. Earle, M.A. Gilea, B.D. Gilmore, S.P. Gorman,
M.T. McCann, K.R. Seddon, Green Chem. 11 (2009) 492e497.
[22] A. Latala, M. Nedzi, P. Stepnowski, Green Chem. 11 (2009) 1371e1376.
[23] U. Mizerska, W. Fortuniak, J. Chojnowski, R. Halasa, A. Konopacka, W. Werel,
Eur. Polym. J. 45 (2009) 779e787.
[24] S.M. Saadeh, Z. Yasseen, F.A. Sharif, H.M.A. Shawish, Ecotoxicol. Environ.
Safety 72 (2009) 1805e1809.
[25] S. Kanjilal, S. Sunitha, P.S. Reddy, K.P. Kumar, U.S.N. Murty, R.B.N. Prasad, Eur.
J. Lipid Sci. Technol. 111 (2009) 941e948.
[26] M.J. Panzner, K.M. Hindi, B.D. Wright, J.B. Taylor, D.S. Han, W.J. Youngs,
C.L. Cannon, Dalton Trans. (2009) 7308e7313.
[27] K.M. Hindi, T.J. Siciliano, S. Durmus¸ , M.J. Panzner, D.A. Medvetz, D.V. Reddy,
L.A. Hogue, C.E. Hovis, J.K. Hilliard, R.J. Mallet, C.A. Tessier, C.L. Cannon,
W.L. Youngs, J. Med. Chem. 51 (2008) 1577e1583.
[28] K.M. Docherty, C.F. Kulpa, Green Chem. 7 (2005) 185e189.
[29] N. Gathergood, M.T. Garcia, P.J. Scammells, Green Chem. 6 (2004) 166e175.
[30] D. Demberelnyamba, K.S. Kim, S. Choi, S.Y. Park, H. Lee, C.J. Kim, I.D. Yoo,
Bioorg. Med. Chem. 12 (2004) 853e857.
[31] E. Çetinkaya, A. Denizci, I. Özdemir, H.T. Ozturk, I. Karaboz, B. Çetinkaya,
J. Chemother. 14 (2002) 241e245.
Stock cultures of bacteria were maintained on nutrient agar (NA)
and yeasts were potato dextrose agar (PDA) at 4 ꢂC. Determination
of minimum inhibitory concentration (MIC) by microdilution
method was performed according to the National Committee for
Clinical Laboratory Standards [43,44]. The MIC was taken as the
lowest concentration that inhibited growth after incubation. Dilu-
tion series using sterile distilled water were prepared at the
required quantities of 400, 200, 100, 50, 25, 12.5, 6.25, 3.12, 1.56,
0.78 mg/mL concentrations in test tubes, which were transferred to
96-well microtiter plates [45]. Overnight grown bacterial suspen-
sions in double strength MuellereHinton broth, yeast suspensions
in double strength yeast glucose broth were standardized to
108 cfu/mL using McFarland No. 0.5 standard solution. Microor-
ganism suspension (100 ml) was then added into the wells. The last-
well chain without microorganism was used as a negative control.
Sterile distilled water and the medium served as a positive growth
control. After incubation at 37 ꢂC for 18 h for all strains, the first
well without turbidity was determined as the MIC. Dimethyl sulf-
oxide (DMSO; Carlo-Erba, France) had no effect on the microor-
ganisms in the concentrations studied. Gentamycin was used as
standard antibacterial agent for positive control, whereas nystatin
was used as antifungal. The final concentration of antimicrobial
agents was between 0.78 and 400 mg/mL.
4.3. Acute toxicity testing
[32] I. Özdemir, A. Denizci, H.T. Ozturk, B. Çetinkaya, Appl. Organometal. Chem.
18 (2004) 318e322.
[33] B. Çetinkaya, I. Özdemir, B. Binbas¸ ıoglu, R. Durmaz, S. Gunal, Arzneım-Forsch-
In this study, firstly the acute oral toxicity of imidazole derivates
was assessed by the limit test in the mice. Limit dose (2000 mg/kg)
for acute oral toxicity according to EPA/OECD was used (n ¼ 10; 5
male and 5 female for each group) [46,47]. The limit test was used
to determine if the toxicity of a test substance is above or below
a specified dose. Toxic responses occurring within a given period
were recorded. Based on the results, a regulatory action or addi-
tional testing was required. Therefore, in this study, the classical
LD50 test was used to determine the lethal dose (LD50) of
a substance that will kill 50% of test animals. The test material is
ꢀ
Drug Res. 49 (1999) 538e540.
[34] R. Durmaz, M. Koroglu, H. Küçükbay, I. Temal, M.K. Ozer, M. Refiq,
E. Çetinkaya, B. Çetinkaya, S. Yologlu, Arzneım-Forsch-Drug Res. 48 (1998)
1179e1184.
[35] B. Çetinkaya, E. Çetinkaya, H. Kuçukbay, R. Durmaz, Arzneım-Forsch-Drug Res.
46 (1996) 821e823.
[36] A.J. Arduengo, L.I. Iconaru, Dalton Trans. (2009) 6903e6914.
[37] A.J. Frey, E. Fells, R.E. Manning, M. Lake, US3467662 (1971).
[38] H. Türkmen, T. Pape, F.E. Hahn, B. Çetinkaya, Organometallics 27 (2008)
571e575.