LETTER
Oxidative ortho-Arylation of N-Aryloxazolidinones
977
Table 3 Electronic Effects of Oxidative ortho-Arylationa
X
X
Y
Pd(OAc)2
(10 mol%)
Y
H
Y
Y
O
O
N
N
+
H
Na2S2O8
TFA
70 °C, 24 h
2n–u
1a,h–i
Entry
X
Y
H
Product
Yield (%)b
Ph
N
O
N
Figure 2 ORTEP plot of the major isomer of arylation product 2h;
anisotropic displacement ellipsoids are shown at the 50% probability
level
8
NPh
NPh
0
2t
Ph
N
Cl
References
Cl
O
N
(1) For a review of the therapeutic properties of N-aryloxazo-
lidinones, see: (a) Halle, E.; Majcher-Peszynska, J.;
Drewelow, B. Chemother. J. 2002, 11, 1. For selected
examples, see: (b) Genin, M. J.; Hutchinson, D. K.; Allwine,
D. A.; Hester, J. B.; Emmert, D. E.; Garmon, S. A.; Ford, C.
W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.;
Yagi, B. H.; Friis, J. M.; Shobe, E. M.; Adams, W. J. J. Med.
Chem. 1998, 41, 5144. (c) Tucker, J. A.; Allwine, D. A.;
Grega, K. C.; Barbachyn, M. R.; Klock, J. L.; Adamski, J. L.;
Brickner, S. J.; Hutchinson, D. K.; Ford, C. W.; Zurenko, G.
E.; Conradi, R. A.; Burton, P. S. M. J. Med. Chem. 1998, 41,
3727. (d) Gleave, D. M.; Brickner, S. J.; Manninen, P. R.;
Allwine, D. A.; Lovasz, K. D.; Rohrer, D. C.; Tucker, J. A.;
Zurenko, G. E.; Ford, C. W. Bioorg. Med. Chem. Lett. 1998,
8, 1231. (e) Moureau, F.; Wouters, J.; Vercauteren, D. P.;
Collin, S.; Evrard, G.; Durant, F.; Ducrey, F.; Koenig, J. J.;
Jarreau, F. X. Eur. J. Med. Chem. 1994, 269. (f) Moureau,
F.; Wouters, J.; Vercauteren, D. P.; Collin, S.; Evrard, G.;
Durant, F.; Ducrey, F.; Koenig, J. J.; Jarreau, F. X. Eur.
J. Med. Chem. 1992, 939.
(2) For selected examples, see: (a) Aroua, L.; Baklouti, A.
Synth. Commun. 2007, 37, 1935. (b) Ghosh, A.; Sieser, J.
E.; Caron, S.; Couturier, M.; Dupont-Gaudet, K.; Girardin,
M. J. Org. Chem. 2006, 71, 1258. (c) Griera, R.; Cantos-
Llopart, C.; Amat, M.; Bosch, J.; de Castillo, J.-C.; Huguet,
J. Bioorg. Med. Chem. Lett. 2005, 15, 2515. (d) Ghosh, A.;
Sieser, J. E.; Riou, M.; Cai, W.; Rivera-Ruiz, L. Org. Lett.
2003, 5, 2207. (e) Cacchi, S.; Fabrizi, G.; Goggiamani, A.
Heterocycles 2003, 61, 505. (f) Gleave, D. M.; Brickner, S.
J.; Manninen, P. R.; Allwine, D. A.; Lovasz, K. D.; Rohrer,
D. C.; Tucker, J. A.; Zurenko, G. E.; Ford, C. W. Bioorg.
Med. Chem. Lett. 1998, 8, 1231. (g) Gleave, D. M.;
Brickner, S. J. J. Org. Chem. 1996, 61, 6470.
9
Cl
0
2u
a Conditions: substrate (0.2 mmol), arene (1 mL), Pd(OAc)2 (10 mol%),
Na2S2O8 (3 equiv), TFA (5 equiv).
b Conversion determined by GC analysis.
c Isolated yield after 43 h.
d Isolated yield in 0.5 mL o-dimethoxybenzene at 90 °C after 54 h.
e Isolated yield after 23 h.
General Procedure for the Pd-Catalyzed Oxidative ortho-Ary-
lation
In a one-dram vial equipped with a Teflon cap was added the sub-
strate (0.2 mmol), Pd(OAc)2 (0.02 mmol, 10 mol%), Na2S2O8 (0.6
mmol), and the unactivated arene (1 mL). TFA (1 mmol) was added
to the resulting suspension. The vial was stirred on a heating block
at 70 °C for the indicated length of time. The reaction mixture was
cooled to r.t., diluted in EtOAc, and washed with sat. NaHCO3. Sub-
sequently, the aqueous phase was extracted with EtOAc. The com-
bined organic extracts were dried over Na2SO4, concentrated in
vacuo, and the resulting residue was purified by silica gel column
chromatography or preparative TLC (eluent: hexanes–EtOAc) to
afford the pure arylation products. See Supporting Information for
more details.
Supporting Information for this article is available online at
(3) For selected reviews, see: (a) Lyons, T. W.; Sanford, M. S.
Chem. Rev. 2010, 110, 1147. (b) Colby, D. A.; Bergman, R.
G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (c) Daugulis,
O.; Zaitsev, V. G.; Shabashov, D.; Pham, Q.-N.; Lazareva,
A. Synlett 2006, 3382. (d) Ritleng, V.; Sirlin, C.; Pfeffer, M.
Chem. Rev. 2002, 102, 1731. (e) Chen, X.; Engle, K.; Wang,
D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094.
(f) Dupont, J.; Consorti, C. S.; Spencer, J. Chem. Rev. 2005,
105, 2527. (g) Shilov, A. E.; Shul’pin, G. B. Chem. Rev.
1997, 97, 2879. (h) Ryabov, A. D. Chem. Rev. 1990, 90,
403.
Acknowledgment
Funding is provided by the University of Toronto, Canada Founda-
tion for Innovation, Ontario Research Fund, Boehringer Ingelheim
Ltd. Canada, and the Natural Sciences and Engineering Research
Council (NSERC) of Canada. V.M.D. is grateful for an Alfred P.
Sloan fellowship and C.S.Y. for an NSERC André Hamer Award
and a Canada Graduate Scholarship.
Synlett 2011, No. 7, 974–978 © Thieme Stuttgart · New York