M. Bortoluzzi et al. / Journal of Organometallic Chemistry 696 (2011) 2565e2575
2567
3
3
3JPtH ¼ 38 Hz, imine-CH); 8.96 (d, 1H, JHH ¼ 4.9 Hz, JPtH ¼ 56 Hz,
298 K) ¼ 63 Uꢁ1 molꢁ1 cm2. No melting or decomposition at
T ꢂ 260 ꢀC. 1H NMR {DMSO-d6, 298 K, ppm}: 13.81 (s, br, 1H,
quinoline-H2); 8.83 (d, 1H, 3JHH ¼ 8.1 Hz, quinoline-H4); 8.74 (d, 1H,
3JHH ¼ 4.9 Hz, 3JPtH ¼ 50 Hz, pyridine-H6’); 8.48 (d, 1H, 3JHH ¼ 7.5 Hz,
3
imidazole-NH); 9.53 (s, 1H, JPtH ¼ 32 Hz, imine-CH); 8.75 (d, 1H,
3
quinoline-H7); 8.35 (t, 1H, JHH ¼ 7.5 Hz, pyridine-H4’); 8.22 (d, 1H,
3JPtH ¼ 57 Hz, 3JHH ¼ 5.1 Hz, quinoline-H2); 8.69 (d, 1H, 3JHH ¼ 8.3 Hz,
quinoline-H4); 8.28 (s, 1H, imidazole-H2’); 8.25 (d, 1H,
3JHH ¼ 8.1 Hz, quinoline-H7); 8.24 (s, 1H, imidazole-H5’); 7.98 (d, 1H,
3JHH ¼ 8.1 Hz, quinoline-H5); 7.68 (t, 1H, 3JHH ¼ 8.0 Hz, quinoline-H6);
7.53 (dd, 1H, 3JHH ¼ 5.1 Hz, 3JHH ¼ 8.3 Hz, quinoline-H3); 0.82 (s, 3H,
2JPtH ¼ 75 Hz, Pt-CH3). 13C {1H} NMR {DMSO-d6, 298 K, ppm}: 148.9
quinoline-C2, 148.7 imine-C, 139.2 imidazole-C2’, 137.8 quinoline-C4,
129.0 quinoline-C5, 128.6 quinoline-C6, 126.9 imidazole-C5’, 123.9
quinoline-C3, 119.8 quinoline-C7, -16.7 (1JPtC ¼ 760 Hz) Pt-CH3, 150.4,
147.0, 139.7, 130.8 ancillary ligand not H-bonded carbons.
3JHH ¼ 7.5 Hz, quinoline-H5); 8.09 (d, 1H, 3JHH ¼ 7.5 Hz, pyridine-H3’);
7.97e7.77 (m, 2H, quinoline-H6, pyridine-H5’); 7.68 (dd, 1H,
3JHH ¼ 4.9 Hz, 3JHH ¼ 8.1 Hz, quinoline-H3); 1.10 (s, 3H, 2JPtH ¼ 75 Hz,
Pt-CH3). 13C {1H} NMR {DMSO-d6, 298 K, HSQC projection, ppm}:
156.8 imine-C, 151.2 pyridine-C6’, 150.4 quinoline-C2, 141.2 pyridine-
C4’, 139.0 quinoline-C4, 131.1 quinoline-C5, 130.7 pyridine-C3’, 130.1
pyridine-C5’, 129.3 quinoline-C6, 124.5 quinoline-C3, 121.1 quinoline-
C7, -7.70 Pt-CH3.
2.4.2. Characterization of 1NNMePy
Elemental analysis for C18H16F3N3O3PtS: calcd. C 35.7, H 2.66, N
2.5. Synthesis of [PdMe(NNTh)](X) (X ¼ SO3CF3 or ClO4) (2NNTh
)
6.93; found
C
35.6,
H
2.67,
N
6.91. LM (dmf, 298 K)
¼
and [PdMe(NNImH)](ClO4) (2NNImH
)
68
U
ꢁ1 molꢁ1 cm2. No melting or decomposition at T ꢂ 260 ꢀC. 1H
3
NMR {DMSO-d6, 298 K, ppm: 8.59 (d, 1H, JHH
¼
5.4 Hz,
The synthetic procedure for the preparation of 2NNTh and 2NNImH
was the same as previously described for the Pt(II) complexes 1NNTh
and INNImH, using PdClMe(COD) (0.151 g, 0.57 mmol) as starting
reagent. The yields were >90% for all the perchlorate salts and
>65% for the triflate salt.
4JHH ¼ 1.0 Hz, quinoline-H2); 8.55 (d, 1H, JHH ¼ 8.5 Hz, quinoline-
3
3
H4); 8.34 (d, 1H, JHH ¼ 5.7 Hz, pyridine-H6’); 8.21e8.12 (m, 2H,
3
quinoline-H7 and pyridine-H4’); 8.05 (d, 1H, JHH ¼ 7.8 Hz, pyridine-
3
H3’); 7.92 (d, 1H, JHH ¼ 8.2 Hz, quinoline-H5); 7.64e7.53 (m, 2H,
3
quinoline-H6 and pyridine-H5’); 7.42 (dd, 1H, JHH ¼ 5.4 Hz,
3JHH ¼ 8.5 Hz, quinoline-H3); 2.50 (s, 3H, imine-CH3); 0.57 (s, 3H,
2JPtH ¼ 72 Hz, Pt-CH3). 13C {1H} NMR {DMSO-d6, 298 K, ppm}: 149.5
pyridine-C6’, 148.9 quinoline-C2, 140.3 pyridine-C4’, 138.6 quinoline-
C4, 130.8, 130.2, 130.1, 129.8 quinoline-C5, pyridine-C3’, quinoline-C6,
pyridine-C5’, 126.3 quinoline-C7, 124.0 quinoline-C3, 19.5 imine-CH3,
-6.6 Pt-CH3 (1JPtC ¼ 805 Hz), 168.3, 162.5, 151.8, 139.3, 129.0 ancillary
ligand not H-bonded carbons.
2.5.1. Characterization of 2NNTh
Elemental analysis of C15H12F3N3O3PdS2: calcd. C 35.3, H 2.37,
N
8.24; found
C 35.2, H 2.36, N 8.21. LM (nitromethane,
298 K) ¼ 84
U
ꢁ1 molꢁ1 cm2. Decomposition at T > 240 ꢀC. 1H NMR
{CD3NO2, 336 K, ppm}: 9.30 (s, 1H, imine-CH); 8.74 (dd, 1H,
3JHH ¼ 5.2 Hz, JHH
¼
1.3 Hz, quinoline-H2); 8.65 (dd, 1H,
4
3JHH ¼ 8.4 Hz, 4JHH ¼ 1.3 Hz, quinoline-H4); 8.33 (d, 1H, 3JHH ¼ 7.9 Hz,
3
quinoline-H7); 8.28 (d, 1H, JHH ¼ 3.2 Hz, thiazole-H5’); 8.20 (d, 1H,
2.4.3. Characterization of 1NNPhPy
3JHH ¼ 7.9 Hz, quinoline-H5); 8.06 (d, 1H, 3JHH ¼ 3.2 Hz, thiazole-H4’);
7.87 (t, 1H, 3JHH ¼ 7.9 Hz, quinoline-H6); 7.74 (dd, 1H, 3JHH ¼ 5.2 Hz,
3JHH ¼ 8.4 Hz, quinoline-H3); 1.08 (s, 3H, Pd-CH3). 13C {1H} NMR
{CD3NO2, 336 K, ppm}: 153.1, 148.1, 144.2, 141.3, 133.6, 130.7, 130.2,
125.2, 122.3 ancillary ligand CH carbons; 170.4, 151.5, 139.1, 132.9
ancillary ligand not H-bonded carbons; 1.9 Pd-CH3.
Elemental analysis for C22H18ClN3O4Pt: calcd. C 42.7, H 2.93,
N 6.79, Cl 5.73; found C 42.6, H 2.94, N 6.77, Cl 5.72. LM (dmf,
298 K) ¼ 61 Uꢁ1 molꢁ1 cm2. No melting or decomposition at
T ꢂ 260 ꢀC. 1H NMR {DMSO-d6, 298 K, ppm}: 9.12 (d, 1H,
3JHH ¼ 5.3 Hz, 3JPtH ¼ 53 Hz, quinoline-H2); 9.00 (d,1H, 3JHH ¼ 5.3 Hz,
3
pyridine-H6’); 8.90 (d, 1H, JHH ¼ 8.2 Hz, quinoline-H4); 8.30 (t, 1H,
3JHH ¼ 7.8 Hz, pyridine-H4’); 8.21 (d, 1H, 3JHH ¼ 8.0 Hz, quinoline-H7);
7.92 (m, 1H, pyridine-H53’); 7.88e7.77 (m, 5H, imine-phenyl); 7.75
2.5.2. Characterization of 2NNImH
Elemental analysis of C14H13ClN4O4Pd: calcd. C 37.9, H 2.96,
N 12.6, Cl 8.00; found C 37.7, H 2.97, N 12.5, Cl 7.97. LM (dmf,
3
(dd, 1H, JHH ¼ 5.3 Hz, JHH ¼ 8.2 Hz, quinoline-H3); 7.56 (t, 1H,
3JHH ¼ 8.0 Hz, quinoline-H6); 7.34 (d, 1H, 3JHH ¼ 7.8 Hz, pyridine-H3’);
6.94 (d,1H, 3JHH ¼ 8.0 Hz, quinoline-H5); 1.21 (s, 3H, 2JPtH ¼ 74 Hz, Pt-
CH3). 13C {1H} NMR {DMSO-d6, 298 K, ppm}: 167.2 imine-C,
163.4e124.1 ancillary ligand carbons, ꢁ6.2 Pt-CH3.
298 K) ¼ 77
U
ꢁ1 molꢁ1 cm2. Decomposition at T > 240 ꢀC. 1H NMR
{DMSO-d6, 298 K, ppm}: 13.71 (s, very br,1H, imidazole-NH); 9.12 (s,
1H, imine-CH); 8.61 (d, 1H, 3JHH ¼ 8.3 Hz, quinoline-H4); 8.53 (d, 1H,
3JHH ¼ 5.0 Hz, quinoline-H2); 8.23 (s, 1H, imidazole-H2’); 8.20 (d,
1H, 3JHH ¼ 7.7 Hz, quinoline-H7); 8.14 (s, 1H, imidazole-H5’); 8.00 (d,
1H, 3JHH ¼ 7.7 Hz, quinoline-H5); 7.72 (t, 1H, 3JHH ¼ 7.7 Hz, quinoline-
H6); 7.63 (dd, 1H, 3JHH ¼ 5.0 Hz, 3JHH ¼ 8.3 Hz, quinoline-H3); 0.62 (s,
3H, Pd-CH3). 13C {1H} NMR {DMSO-d6, 298 K, ppm}: 151.0 quinoline-
C2, 149.3 imine-C, 139.4 imidazole-C2’, 139.2 quinoline-C4, 129.2
quinoline-C5,128.1 quinoline-C6,125.7 imidazole-C5’,123.3 quinoline-
C3, 119.5 quinoline-C7, -3.7 Pd-CH3, 148.2, 144.9, 138.1, 130.3 ancillary
ligand not H-bonded carbons.
2.4.4. Characterization of 1NNTh
Elemental analysis for C15H12F3N3O3PtS2: calcd. C 30.1, H 2.02,
N
7.02; found C 30.0, H 2.02, N 7.00. LM (nitromethane,
298 K) ¼ 71 Uꢁ1 molꢁ1 cm2. No melting or decomposition at
T ꢂ 260 ꢀC. 1H NMR {CD3NO2, 298 K, ppm}: 9.77 (s,1H, 3JPtH ¼ 37 Hz,
3
3
imine-CH); 8.78 (d, 1H, JHH ¼ 5.0 Hz, JPtH ¼ 59 Hz, quinoline-H2);
8.66 (d, 1H, 3JHH ¼ 8.5 Hz, quinoline-H4); 8.31 (d, 1H, 3JHH ¼ 8.0 Hz,
3
quinoline-H7); 8.29 (d, 1H, JHH ¼ 3.2 Hz, thiazole-H5’); 8.12 (d, 1H,
3JHH ¼ 8.0 Hz, quinoline-H5); 7.99 (d, 1H, 3JHH ¼ 3.2 Hz, 3JPtH ¼ 20 Hz,
3
thiazole-H4’); 7.74 (t, 1H, JHH ¼ 8.0 Hz, quinoline-H6); 7.56 (dd, 1H,
2.6. Synthesis of [PtCl(NNTh)](SO3CF3) (3NNTh) and
3JHH ¼ 5.0 Hz, 3JHH ¼ 8.5 Hz, quinoline-H3); 1.22 (s, 3H, 2JPtH ¼ 77 Hz,
Pt-CH3). 13C {1H} NMR {CD3NO2, 298 K, HSQC projection, ppm}:
150.6 quinoline-C2, 148.6 imine-C, 143.4 thiazole-C4’, 139.9 quinoline-
C4, 132.8 quinoline-C5, 131.8 thiazole-C5’, 131.0 quinoline-C6, 126.0
quinoline-C3, 122.1 quinoline-C7, -11.1 Pt-CH3.
[PtCl(NNImH)](X) (X ¼ SO3CF3 or ClO4) (3NNImH
)
The synthetic procedure for the preparation of chloro-
complexes 3NNTh and 3NNImH was the same previously described
for the methyl-complexes 1NNTh and 1NNImH, starting from 0.222 g
(0.57 mmol) of cis/trans-PtCl2(SMe2)2. The yields were >80% for the
perchlorate salt and >70% for the triflate salts. Slow cooling of
dimethylformamide/nitromethane/diethylether solutions purified
all the complexes as microcrystalline solids.
2.4.5. Characterization of 1NNImH
Elemental analysis for C14H13ClN4O4Pt: calcd. C 31.6, H 2.46,
N 10.5, Cl 6.67; found C 31.5, H 2.45, N 10.5, Cl 6.65. LM (dmf,