Organic Letters
Letter
simultaneously by two SETs to regenerate the ground-state
REFERENCES
■
Acr+-Mes ClO4 . Meanwhile, the iminyl radical 7, H+, and the
−
(1) Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of
Heterocycles; Wiley-VCH: Weinheim, 2012.
(2) For selected reviews, see: (a) Fallis, A. G.; Brinza, I. M.
Tetrahedron 1997, 53, 17543. (b) Zard, S. Z. Chem. Soc. Rev. 2008, 37,
1603. (c) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev.
2016, 45, 2044. (d) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45,
CoII are generated. 7 reacts with 2a to construct the C−N bond
to afford intermediate 8. 8 undergoes radical cyclization to
construct the C−C bond to give 3aa by intermediate 9 with the
release of an electron (e−) and the second H+. The CoII is
reduced to CoI by the released e−. The reaction of CoI with H+
gives CoIII−H, which further reacts with the second H+ to
release H2 to close the cobalt catalyst cycle. The reduction of
CoIII−H to CoII−H followed by protonation to release H2 and
produce CoII or the homolytic cleavage involving two CoIII−H
to evolve H2 can not be ruled out.18
In summary, we have developed the first visible-light
photoredox-catalyzed iminyl radical formation by N−H bond
cleavage with H2 release and its application in the synthesis of
isoquinolines and related polyaromatics in high atom economy
under ambient temperature. During the transformation, the
generated iminyl radical initiates cascade C−N/C−C bond
construction. The new cobalt catalyst Co(dmgH)2(4-CON-
Me2Py)Cl plays an important role in achieving the high
reaction efficiency and wide substrate scope. The advantages of
the established method will inspire the utilization of the iminyl
radical by visible light irradiation with H2 release for various N-
heterocycle synthesis.
3069. (e) Karkas, M. D. ACS Catal. 2017, 7, 4999.
̈
̈
(3) For selected samples by electrochemistry, see: (a) Xu, H.-C.;
Moeller, K. D. J. Am. Chem. Soc. 2010, 132, 2839. (b) Gieshoff, T.;
Schollmeyer, D.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55,
9437. (c) Hou, Z.-W.; Mao, Z.-Y.; Zhao, H.-B.; Melcamu, Y. Y.; Lu, X.;
Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168. (d) Xiong,
P.; Xu, H. H.; Xu, H.-C. J. Am. Chem. Soc. 2017, 139, 2956. For
selected samples by visible-light photoredox catalysis, see: (e) Hu, X.-
Q.; Chen, J.-R.; Wei, Q.; Liu, F.-L.; Deng, Q.-H.; Beauchemin, A. M.;
Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 12163. (f) Choi, G. J.;
Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 9226. (g) Brachet, E.;
Marzo, L.; Selkti, M.; Konig, B.; Belmont, P. Chem. Sci. 2016, 7, 5002.
̈
(4) For selected samples about thermochemistry, see: (a) Forrester,
A. R.; Gill, M.; Sadd, J. S.; Thomson, R. H. J. Chem. Soc., Perkin Trans.
1 1979, 1, 612. (b) Uchiyama, K.; Hayashi, Y.; Narasaka, K. Chem. Lett.
1998, 27, 1261. (c) Lin, X.; Stien, D.; Weinreb, S. M. Org. Lett. 1999,
1, 637. For selected samples by photochemistry, see: (d) Boivin, J.;
Fouquet, E.; Zard, S. Z. Tetrahedron Lett. 1991, 32, 4299. (e) Jiang, H.;
An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem., Int. Ed.
2015, 54, 4055. (f) Davies, J.; Booth, S. G.; Essafi, S.; Dryfe, R. A.;
Leonori, D. Angew. Chem., Int. Ed. 2015, 54, 14017. (g) Sun, X.; Yu, S.
Chem. Commun. 2016, 52, 10898. (h) Shu, W.; Nevado, C. Angew.
Chem., Int. Ed. 2017, 56, 1881. (i) Jiang, H.; Studer, A. Angew. Chem.,
Int. Ed. 2017, 56, 12273. (j) Davies, J.; Sheikh, N. S.; Leonori, D.
Angew. Chem., Int. Ed. 2017, 56, 13361. (k) Yu, X.-Y.; Chen, J.-R.;
Wang, P.-Z.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed.
2018, 57, 738. For selected reviews, see: (l) Walton, J. C. Molecules
2016, 21, 63. (m) Walton, J. C. Molecules 2016, 21, 660. (n) Jackman,
M.; Cai, Y.; Castle, S. Synthesis 2017, 49, 1785.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedure, product characterization, and
(5) (a) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2010, 12, 3682.
(b) Li, D.; Yang, T.; Su, H.; Yu, W. Adv. Synth. Catal. 2015, 357, 2529.
(6) Zhao, H.-B.; Hou, Z.-W.; Liu, Z.-J.; Zhou, Z.-F.; Song, J.; Xu, H.-
C. Angew. Chem., Int. Ed. 2017, 56, 587.
Accession Codes
CCDC 1576204 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033.
(7) For selected samples, see: (a) He, R.; Huang, Z.-T.; Zheng, Q.-Y.;
Wang, C. Angew. Chem., Int. Ed. 2014, 53, 4950. (b) Zhou, A.-X.; Mao,
L.-L.; Wang, G.-W.; Yang, S.-D. Chem. Commun. 2014, 50, 8529.
(c) He, K.-H.; Zhang, W.-D.; Yang, M.-Y.; Tang, K.-L.; Qu, M.; Ding,
Y.-S.; Li, Y. Org. Lett. 2016, 18, 2840. (d) Li, W.-H.; Wu, L.; Li, S.-S.;
Liu, C.-F.; Zhang, G.-T.; Dong, L. Chem. - Eur. J. 2016, 22, 17926.
(e) Manikandan, R.; Madasamy, P.; Jeganmohan, M. ACS Catal. 2016,
6, 230. (f) Chen, C.; Chen, X.; Zhao, H.; Jiang, H.; Zhang, M. Org.
Lett. 2017, 19, 3390. (g) Lv, N.; Liu, Y.; Xiong, C.; Liu, Z.; Zhang, Y.
Org. Lett. 2017, 19, 4640.
(8) For selected samples and reviews, see: (a) Mitkina, T.;
Stanglmair, C.; Setzer, W.; Gruber, M.; Kisch, H.; Konig, B. Org.
Biomol. Chem. 2012, 10, 3556. (b) Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.;
Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung,
C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2013, 135, 19052. (c) Li, X.-B.; Li,
Z.-J.; Gao, Y.-J.; Meng, Q.-Y.; Yu, S.; Weiss, R. G.; Tung, C.-H.; Wu,
L.-Z. Angew. Chem., Int. Ed. 2014, 53, 2085. (d) Zhang, G.; Liu, C.; Yi,
H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A. J. Am.
Chem. Soc. 2015, 137, 9273. (e) Zhang, G.; Hu, X.; Chiang, C.-W.; Yi,
H.; Pei, P.; Singh, A. K.; Lei, A. J. Am. Chem. Soc. 2016, 138, 12037.
(f) Zhao, Q.-Q.; Hu, X.-Q.; Yang, M.-N.; Chen, J.-R.; Xiao, W.-J.
Chem. Commun. 2016, 52, 12749. (g) Lin, J.; Li, Z.; Kan, J.; Huang, S.;
Su, W.; Li, Y. Nat. Commun. 2017, 8, 14353. (h) Zhong, J.-J.; Meng,
Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Huaxue Xuebao 2017, 75, 34.
(i) Pei, P.; Zhang, F.; Yi, H.; Lei, A. Huaxue Xuebao 2017, 75, 15. For
selected reviews of visible-light photoredox catalysis, see: (j) Prier, C.
K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.
(9) For selected samples, see: (a) Qian, X.-Y.; Li, S.-Q.; Song, J.; Xu,
H.-C. ACS Catal. 2017, 7, 2730. (b) Wang, P.; Tang, S.; Huang, P.;
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
§W.-F.T. and D.-P.W. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the NSFC (Nos. 21472145 and
21572085), the Fundamental Research Funds for the Central
Universities (xjj2015099), and the 111 Project of MOE (111-2-
17). We thank Prof. Ya-Ping Du and Prof. Gang He, Xi’an
Jiaotong University, for support on related experiments.
D
Org. Lett. XXXX, XXX, XXX−XXX