and to the lack of suitable designer protocols allowing the
strong intermolecular interactions among macrocycles to
be directionally controllable and precisely balanced to
favor the formation of not only one-dimensional (1D)
fibrillar nanostructures but also 3D entangled networks
for extensive solvent entrapment.1e,2hÀ2j,3i Accordingly,
new gelling agents often have been discovered serendipi-
tously or produced by modifying the serendipitously ob-
tained gelators.1e
A few new dimensions recently were added into the
design aspects of supramolecular gelling agents. Dastidar1e,4a
and McNeil4b,c adopted a de novo crystal engineering
approach to create new gelators by design. This approach
emphasizes the importance of 1D intermolecular interac-
tions in inducing and maintaining gel formation,3i and
such interactions believably can be extracted from the
known crystal structures and applied to identify new types
of gelators. Another de novo design strategy explores the
hostÀguest chemistry to design responsive supramolecular
gels. The prominent examples along this line include the
use of cyclodextrin by Harade,4d crown ether by Huang
and Liu,4e cucurbit[8]uril by Scherman,4f and proteinÀ
peptide interactions by Regan.4g
with its nearest pentamer, leading to a dimeric ensemble
˚
where the average interplanar distance is as short as 3.1 A.
These H-bonds form as a result of comparatively much
weaker CÀF HÀN H-bonds, causing the two amide
3 3 3
bonds in every pentamer to twist out of the pentameric
plane to form stronger CdO HÀN H-bonds with
3 3 3
the adjacent nearest pentamer. The weakness of
CÀF HÀN H-bonds can be further illustrated by a
3 3 3
dimer molecule 1d (Figure 1c) whose amide bond is twisted
out of the aromatic plane by 45° in order to form stronger
˚
CdO HÀN H-bonds (2.17 A) even in the presence of
3 3 3
two stabilizing CÀF HÀN H-bonds (F Hdistances=
3 3 3
3 3 3
˚
2.50 and 2.54 A).
We recently designed and crystallized C5-symmetric
fluoropentamer 15 with its circular pentameric backbone3h,6
enforced by intramolecular CÀF HÀN H-bonds
3 3 3
(Figure 1aÀb).6e,f The aromatic backbone of 1 was re-
vealed to be quite planar which should enhance interplanar
πÀπ interactions. In addition, every pentamer forms two
Figure 1. (a) Structures of fluoropentamers 1À3. (b) Top and
side views of crystal structure of 1,5 illustrating the formation of
˚
intermolecularCdO HÀNH-bonds(2.50A, Figure1b)
3 3 3
˚
interplanar H-bonds of 2.50 A in length. (c) Structure of dimer
1d, and top and side views of its crystal structure, illustrating the
˚
formation of intermolecular H-bonds of 2.17 A in length.
(3) (a) Shklyarevskiy, I. O.; Jonkheijm, P.; Christianen, P. C. M.;
Schenning, A. P. H. J.; Meijer, E. W.; Henze, O.; Kilbinger, A. F. M.;
Feast, W. J.; Guerzo, A. D.; Desvergne, J.-P.; Maan, J. C. J. Am. Chem.
Soc. 2005, 127, 1112. (b) Seo, S. H.; Chang, J. Y.; Tew, G. N. Angew.
Chem., Int. Ed. 2006, 45, 7526. (c) Hoeben, F. J. M.; Shklyarevskiy, I. O.;
Pouderoijen, M. J.; Engelkamp, H.; Schenning, A. P. H. J.; Christianen,
P. C. M.; Maan, J. C.; Meijer, E. W. Angew. Chem., Int. Ed. 2006, 45,
1232. (d) Ajayaghosh, A.; Varghese, R.; Praveen, V. K.; Mahesh, S.
Angew. Chem., Int. Ed. 2006, 45, 3261. (e) Zang, L.; Che, Y.; Moore, J. S.
Acc. Chem. Res. 2008, 41, 1596. (f) Wu, J.; Pisula, W.; Mullen, K. Chem.
Rev. 2007, 107, 718. (g) Krieg, E.; Shirman, E.; Weissman, H.; Shimoni,
E.; Wolf, S. G.; Pinkas, I.; Rybtchinski, B. J. Am. Chem. Soc. 2009, 131,
14365. (h) Qin, B.; Ren, C. L.; Ye, R. J.; Sun, C.; Chiad, K.; Chen, X. Y.;
Li, Z.; Xue, F.; Su, H. B.; Chass, G. A.; Zeng, H. Q. J. Am. Chem. Soc.
2010, 132, 9564. (i) Pinacho Crisostomo, F. R.; Lledo, A.; Shenoy, S. R.;
Iwasawa, T.; Rebek, J. J. Am. Chem. Soc. 2009, 131, 7402.
(4) (a) Das, U. K.; Trivedi, D. R.; Adarsh, N. N.; Dastidar, P. J. Org.
Chem. 2009, 74, 7111. (b) Chen, J.; McNeil., A. J. J. Am. Chem. Soc.
2008, 130, 16496. (c) King, K. N.; McNeil, A. J. Chem. Commun. 2010,
46, 3511. (d) Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A.
Angew. Chem., Int. Ed. 2007, 46, 5144. (e) Ge, Z.; Hu, J.; Huang, F.; Liu,
S. Angew. Chem., Int. Ed. 2009, 48, 1798. (f) Appel, E. A.; Biedermann,
F.; Rauwald, U.; Jones, S. T.; Zayed, J. M.; Scherman, O. A. J. Am.
Chem. Soc. 2010, 132, 14251. (g) Grove, T. Z.; Osuji, C. O.; Forster,
J. D.; Dufresne, E. R.; Regan, L. J. Am. Chem. Soc. 2010, 132, 14024.
(5) Ren, C. L.; Zhou, F.; Qin, B.; Ye, R. J.; Shen, S.; Su, H. B.; Zeng,
H. Q. Angew. Chem., Int. Ed. 2011, in revision.
(6) (a) Yan, Y.; Qin, B.; Shu, Y. Y.; Chen, X. Y.; Yip, Y. K.; Zhang,
D. W.; Su, H. B.; Zeng, H. Q. Org. Lett. 2009, 11, 1201. (b) Yan, Y.;
Qin, B.; Ren, C. L.; Chen, X. Y.; Yip, Y. K.; Ye, R. J.; Zhang, D. W.; Su,
H. B.; Zeng, H. Q. J. Am. Chem. Soc. 2010, 132, 5869. (c) Qin, B.; Chen,
X. Y.; Fang, X.; Shu, Y. Y.; Yip, Y. K.; Yan, Y.; Pan, S. Y.; Ong, W. Q.;
Ren, C. L.; Su, H. B.; Zeng, H. Q. Org. Lett. 2008, 10, 5127. (d) Qin, B.;
Ren, C. L.; Ye, R. J.; Sun, C.; Chiad, K.; Chen, X. Y.; Li, Z.; Xue, F.; Su,
H. B.; Chass, G. A.; Zeng, H. Q. J. Am. Chem. Soc. 2010, 132, 9564. (e)
Qin, B.; Ong, W. Q.; Ye, R. J.; Du, Z. Y.; Chen, X. Y.; Yan, Y.; Zhang,
K.; Su, H. B.; Zeng, H. Q. Chem. Commun. 2011, 47, 5419. (f) Qin, B.;
Sun, C.; Liu, Y.; Shen, J.; Ye, R. J.; Zhu, J.; Duan, X.-F.; Zeng, H. Q.
Org. Lett. 2011, 13, 2270.
Dotted cycles in (b) indicate the amide bonds that are twisted
out of the plane to form stronger intermolecular H-bonds that
enhance the interplanar aggregations.
Inferred from the existence of these interplanar
H-bonds, shortened interplanar distance, and the pla-
nar aromatic backbone as found in pentamer 1 that
exhibits very poor solubilities in all of the organic
solvents, we envisioned that macrocyclic analogs de-
rived from 1 that bear suitably modified hydrocarbon
chains and enhanced solubilities could be gelators.
Their gelating ability should derive first from their
tendency to form 1D stacked fibrillar structures that
are stabilized by both interplanar H-bonds and πÀπ
stacking forces (Figure 1c), followed by the interco-
lumnar association via hydrophobic hydrocarbon
chains to form a 3D gelling network, resulting in the
gel by trapping organic solvents through surface ten-
sion and capillary forces.
To test our hypothesis, pentamers 2 and 3 each can be
synthesized after 15 steps starting from the commercially
available 2-fluoro-3-nitrobenzoic acid (Scheme S1). The
ability of 2 and 3 toserve as2Dplanarmacrocyclic gelators
was examinedin a variety of organic solventsbythe “stable
to inversion” method. In brief, the gelators and solvents
were mixed in a sealed sample vial and heated in an oil bath
Org. Lett., Vol. 13, No. 15, 2011
3841