3356
M. Bonnet et al. / Bioorg. Med. Chem. 19 (2011) 3347–3356
96-well plates. The next day, vehicle (DMSO) or drug was added by
serial dilution. Four days later the media was aspirated, XTT solu-
tion (0.3 mg/ml of XTT (Sigma), 2.65 mg/ml N-methyl dibenxopyr-
azine methyl sulfate (Sigma) in phenol red-free media) was added,
and the plates were incubated at 37 °C for 1–2 h. Metabolism of
XTT was quantified by measuring the absorbance at 450 nm. IC50
values were calculated using linear interpolation.
the highest q2 value. Using the default fragment size of 4–7 atoms,
the effect of different fragment distinctions on q2 was explored.
The optimal fragment distinction combination was then used to
characterise the effect of fragment size on HQSAR model q2.
Acknowledgements
The authors thank Dr. Maruta Boyd, Dr. Shannon Black, Stefanie
Maurer and Sisira Kumara for technical assistance and acknowl-
edge the Association for International Cancer Research 10-0042
(M.B.), the Maurice Wilkins Centre for Biodiscovery (M.P.H.,
J.U.F.), US NCI-CA-82566 (A.J.G., M.P.H.), NCI-CA-123823 (D.A.C.),
NCI-T32-CA-121940 (E.W.L.) for funding.
4.3. QSAR modelling
4.3.1. Alignment generation
A minimum energy conformation of 2 was generated using
OMEGA2 (Openeyes Software, USA) with default parameters using
the MMFF94s force field and the rms torsion driving parameter set
at 0.6. All other structures were generated from this conformation
using the SKETCHER (SYBYL8.0, TRIPOS) and minimised using
MAXMIN2 (SYBYL8.0) with the Tripos Force field and Gastieger–
Huckel charges. Minimisation was performed using 1000-steps of
steep decents followed by conjugate gradients until convergence
at 0.05 kcal/(mol Å). A distance dependent dielectric function was
used with a dielectric constant of 80. Molecular alignments were
generated by superimposition of all compounds onto 28 using
ROCS (Openeye Software, USA) with default parameters using both
the shape only and shape in combination with colour force field
method. While the shape only alignment was used for CoMFA,
those compounds poorly aligned as assessed after visual inspec-
tion, were replaced by improved alignments from the shape and
colour force field combination alignment if available. Alternate
proton positions were explored for compound 6, while alternative
conformers based on rotating the B-ring relative to the C-ring were
also explored.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Motzer, R. J.; Mazumdar, M.; Bacik, J.; Berg, W.; Amsterdam, A.; Ferrara, J. J. Clin.
Oncol. 1999, 17, 2530.
2. Murai, M.; Oya, M. Curr. Opin. Urol. 2004, 14, 229.
3. Gnarra, J. R.; Tory, K.; Weng, Y.; Schmidt, L.; Wei, M. H.; Li, H.; Latif, F.; Liu, S.;
Chen, F.; Duh, F.-M.; Lubensky, I.; Duan, D. R.; Florence, C.; Pozzatti, R.; Walther,
M. M.; Bander, N. H.; Grossman, H. B.; Brauch, H.; Pomer, S.; Brooks, J. D.; Isaacs,
W. B.; Lerman, M. I.; Zbar, B.; Linehan, W. M. Nat. Genet. 1994, 7, 85.
4. Kim, W. Y.; Kaelin, W. G., Jr. J. Clin. Oncol. 2004, 22, 4991.
5. Maxwell, P. H.; Wiesener, M. S.; Chang, G. W.; Clifford, S. C.; Vaux, E. C.;
Cockman, M. E.; Wykoff, C. C.; Pugh, C. W.; Maher, E. R.; Ratcliffe, P. J. Nature
1999, 399, 271.
6. Gnarra, J. R.; Zhou, S.; Merrill, M. J.; Wagner, J. R.; Krumm, A.; Papavassiliou, E.;
Oldfield, E. H.; Klausner, R. D.; Linehan, W. M. Proc. Natl. Acad. Sci. U.S.A. 1996,
93, 10589.
7. Iliopoulos, O.; Levy, A. P.; Jiang, C.; Kaelin, W. G., Jr.; Goldberg, M. A. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 10595.
8. Knebelmann, B.; Ananth, S.; Cohen, H. T.; Sukhatme, V. P. Cancer Res. 1998, 58,
226.
9. Staller, P.; Sulitkova, J.; Lisztwan, J.; Moch, H.; Oakeley, E. J.; Krek, W. Nature
2003, 425, 307.
10. Erler, J. T.; Bennewith, K. L.; Nicolau, M.; Dornhofer, N.; Kong, C.; Le, Q. T.; Chi, J.
T.; Jeffrey, S. S.; Giaccia, A. J. Nature 2006, 440, 1222.
11. Ohh, M.; Yauch, R. L.; Lonergan, K. M.; Whaley, J. M.; Stemmer-Rachamimov, A.
O.; Louis, D. N.; Gavin, B. J.; Kley, N.; Kaelin, W. G., Jr.; Iliopoulos, O. Mol. Cell
1998, 1, 959.
12. Hergovich, A.; Lisztwan, J.; Barry, R.; Ballschmieter, P.; Krek, W. Nat. Cell Biol.
2003, 5, 64.
13. Okuda, H.; Saitoh, K.; Hirai, S.; Iwai, K.; Takaki, Y.; Baba, M.; Minato, N.; Ohno,
S.; Shuin, T. J. Biol. Chem. 2001, 276, 43611.
14. Na, X.; Duan, H. O.; Messing, E. M.; Schoen, S. R.; Ryan, C. K.; di Sant’Agnese, P.
A.; Golemis, E. A.; Wu, G. EMBO J. 2003, 22, 4249.
4.3.2. 3D-QSAR analysis
CoMFA was used to determine a relationship between the com-
pounds tested and in vitro cytotoxicity as previously described.20
The SAMPLS Leave-One-Out (LOO) protocol was used to determine
the cross-validated r2 (q2) as a indicator of the predictivity of the
3D-QSAR model along with the optimum number of components,
which was subsequently used in a conventional non-validated
PLS analysis. Only compounds that had defined IC50 data and cyto-
toxicity ratios, and substitutions including up to one rotatable
bond were used. A base CoMFA 3D-QSAR model was created using
a previously described compound set (Model 1)20 and compounds
from each substitution pattern were added into this generating
Models 2–5, and a compound set representing all PAT analogues
was used to generate Model 6. The compound sets used to generate
each model are listed in the Supplementary data.
15. Kaelin, W. G., Jr. Nat. Rev. Cancer 2005, 5, 689.
16. Chan, D. A.; Giaccia, A. J. Cell Cycle 2008, 7, 2987.
17. Turcotte, S.; Sutphin, P. D.; Chan, D. A.; Hay, M. P.; Denny, W. A.; Giaccia, A. J.
Cancer Cell 2008, 14, 90.
18. Turcotte, S.; Giaccia, A. J. Curr. Opin. Cell Biol. 2010, 22, 246.
19. Fleming, A.; Noda, T.; Yoshimori, T.; Rubinstein, D. C. Nat. Chem. Biol. 2011, 7, 9.
20. Hay, M. P.; Turcotte, S.; Flanagan, J. U.; Bonnet, M.; Chan, D. A.; Sutphin, P. D.;
Nguyen, P.; Giaccia, A. J.; Denny, W. A. J. Med. Chem. 2010, 53, 787.
21. Heritage, T. W.; Lowis, D. R. Molecular hologram QSAR. In Rational Drug Design
Novel Methodology and Practical Applications; Parrill, A. L., Reddy, M. R., Eds.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1999;
Vol. 719, pp 212–225.
22. Mahboobi, S.; Sellmer, A.; Eswayah, A.; Elz, S.; Uecker, A.; Böhmer, F.-D. Eur. J.
Med. Chem. 2008, 43, 1444.
23. Tavares, F. X.; Boucheron, S. H.; Griffin, R. J.; Preugschat, F.; Thomson, S. A.;
Wang, T. Y.; Zhou, H.-Q. J. Med. Chem. 2004, 47, 4716.
24. Adams, H.; Batten, S. R.; Davies, G. M.; Duriska, M. B.; Jeffery, J. C.; Jensen, P.; Lu,
J.; Motson, G. R.; Coles, S. J.; Hursthouse, M. B.; Ward, M. D. Dalton Trans. 2005,
1910.
25. Miki, Y.; Nakamura, N.; Hachiken, H.; Takemura, S. J. Heterocycl. Chem. 1989, 26,
1739.
4.3.3. 2D-QSAR analysis
The 2D-Hologram QSAR (HQSAR) method21 as implemented in
SYBYLx1.2 was used to eliminate any dependency of the CoMFA
QSAR model on compound 3D structure, conformation and align-
ment strategy. In this method each compound is broken down into
all possible linear, branched and cyclic structural fragments and
these are counted into arrays of fixed length, a molecular holo-
gram. The bin occupancies associated with the molecular hologram
are descriptor variables that can be related to biological activity by
Partial Least Squares analysis. As HQSAR models can be affected by
hologram length, fragment size and distinction, a series of models
characterising variation in these parameters were generated to
find the optimal QSAR model for the PAT series as determined by