Journal of the American Chemical Society
COMMUNICATION
adjacent R-residues in a protein sheet by a single trans-β2,3-resi-
due with side chains derived from the parent dipeptide sequence
will generate a mixed R/β-peptide analogue with native-like
display of side chains (Figure S3 [SI]). We are currently working
to test this hypothesis and related strategies in a larger β-sheet
prototype.
(5) (a) Horne, W. S.; Price, J. L.; Keck, J. L.; Gellman, S. H. J. Am.
Chem. Soc. 2007, 129, 4178–4180. (b) Horne, W. S.; Boersma, M. D.;
Windsor, M. A.; Gellman, S. H. Angew. Chem., Int. Ed. 2008,
47, 2853–2856. (c) Horne, W. S.; Price, J. L.; Gellman, S. H. Proc. Natl.
Acad. Sci. U.S.A. 2008, 105, 9151–9156. (d) Horne, W. S.; Johnson,
L. M.; Ketas, T. J.; Klasse, P. J.; Lu, M.; Moore, J. P.; Gellman, S. H. Proc.
Natl. Acad. Sci. U.S.A. 2009, 106, 14751–14756. (e) Price, J. L.; Horne,
W. S.; Gellman, S. H. J. Am. Chem. Soc. 2010, 132, 12378–12387.
(6) (a) Blanco, F. J.; Rivas, G.; Serrano, L. Nat. Struct. Biol. 1994,
1, 584–590. For reviews, see:(b) Searle, M. S.; Ciani, B. Curr. Opin.
Struct. Biol. 2004, 14, 458–464. (c) Nowick, J. S. Acc. Chem. Res. 2008,
41, 1319–1330.
(7) Brown, J. E.; Klee, W. A. Biochemistry 1971, 10, 470–476.
(8) (a) Krauthauser, S.; Christianson, L. A.; Powell, D. R.; Gellman,
S. H. J. Am. Chem. Soc. 1997, 119, 11719–11720. (b) Seebach, D.; Abele,
S.; Gademann, K.; Jaun, B. Angew. Chem., Int. Ed. 1999, 38, 1595–1597.
(c) Karle, I.; Gopi, H. N.; Balaram, P. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 5160–5164. (d) Martinek, T. A.; Toth, G. K.; Vass, E.; Hollosi, M.;
Fulop, F. Angew. Chem., Int. Ed. 2002, 41, 1718–1721. (e) Langenhan,
J. M.; Guzei, I. A.; Gellman, S. H. Angew. Chem., Int. Ed. 2003,
42, 2402–2405. (f) Martinek, T. A.; Mandity, I. M.; Fulop, L.; Toth,
G. K.; Vass, E.; Hollosi, M.; Forro, E.; Fulop, F. J. Am. Chem. Soc. 2006,
128, 13539–13544. (g) Rua, F.; Boussert, S.; Parella, T.; Diez-Perez, I.;
Branchadell, V.; Ortuno, R.M. Org. Lett. 2007, 9, 3643–3645.
(9) (a) Karle, I. L.; Gopi, H. N.; Balaram, P. Proc. Natl. Acad. Sci. U.S.
A. 2001, 98, 3716–3719. (b) Gopi, H. N.; Roy, R. S.; Raghothama, S. R.;
Karle, I. L.; Balaram, P. Helv. Chim. Acta 2002, 85, 3313–3330. (c) Roy,
R. S.; Gopi, H. N.; Raghothama, S.; Gilardi, R. D.; Karle, I. L.; Balaram, P.
Biopolymers 2005, 80, 787–799. (d) Segman, S.; Lee, M. R.; Vaiser, V.;
Gellman, S. H.; Rapaport, H. Angew. Chem., Int. Ed. 2010, 49, 716–719.
(10) For a discussion on the significant differences in β-hairpin
folding energetics in water vs organic solvent, see: Maynard, A. J.;
Sharman, G. J.; Searle, M. S. J. Am. Chem. Soc. 1998, 120, 1996–2007.
(11) Sequence-specific peptoid polymers have recently been shown
capable of forming 2D crystalline sheets in aqueous solution. Nam, K. T.;
Shelby, S. A.; Choi, P. H.; Marciel, A. B.; Chen, R.; Tan, L.; Chu, T. K.;
Mesch, R. A.; Lee, B. C.; Connolly, M. D.; Kisielowski, C.; Zuckermann,
R. N. Nat. Mater. 2010, 9, 454–460.
In summary, we have shown that the ability of a mixed-
backbone R/β-peptide to manifest the sheet fold encoded by a
prototype R-peptide sequence depends critically on the structure
of the β-residues employed. Quantitative comparison of folded
populations is precluded here by the lack of a fully folded control
sequence for each monomer examined; however, qualitative
analysis of NMR chemical shift data, observed long-range NOEs,
and the resulting NMR-derived solution structures leads to some
general conclusions. An Rfβ3 replacement is tolerated, while
Rftrans-β2,3 substitution leads to an oligomer that folds as well
or better than the native R-peptide. Backbone torsional con-
straints in the form of 5- or 6-membered rings do not promote
folding in a protein sheet context. Our results provide a family of
unnatural scaffolds for the mimicry of bioactive β-hairpins.18
Moreover, the insights we have obtained into the sequence-based
mimicry of protein β-sheets, combined with earlier studies on the
R-helix,5 deliver a testable strategy for the sequence-based design
of unnatural-backbone oligomers that fold like a natural protein
tertiary structure.
’ ASSOCIATED CONTENT
S
Supporting Information. Complete ref 18b, Figures
b
S1-S3, Tables S1-S7, coordinates for NMR-derived solution
structures, and experimental methods. This material is available
’ AUTHOR INFORMATION
(12) Espinosa, J. F.; Gellman, S. H. Angew. Chem., Int. Ed. 2000,
39, 2330–2333.
(13) Haque, T. S.; Little, J. C.; Gellman, S. H. J. Am. Chem. Soc. 1996,
118, 6975–6985.
Corresponding Author
(14) For examples, see: (a) Searle, M. S.; Griffiths-Jones, S. R.;
Skinner-Smith, H. J. Am. Chem. Soc. 1999, 121, 11615–11620. (b) Tatko,
C. D.; Waters, M. L. J. Am. Chem. Soc. 2002, 124, 9372–9373.
(15) An isopropyl side chain was used to maintain comparable shape
and hydrophobicity among the acyclic and cyclic β-residues examined.
(16) (a) β3-Residues used are commercially available. (b) β2-Re-
sidues: Chi, Y. G.; Gellman, S. H. J. Am. Chem. Soc. 2006,
128, 6804–6805. (c) cis-β2,3-Residues: Zhu, C.; Shen, X. Q.; Nelson,
S. G. J. Am. Chem. Soc. 2004, 126, 5352–5353. (d) trans-β2,3-Residues:
Xu, X. A.; Wang, K.; Nelson, S. G. J. Am. Chem. Soc. 2007,
129, 11690–11691. (e) trans-Cyclic residues: LePlae, P. R.; Umezawa,
N.; Lee, H. S.; Gellman, S. H. J. Org. Chem. 2001, 66, 5629–5632. (f) cis-
Cyclic residues: Csomos, P.; Kanerva, L. T.; Bernath, G.; Fulop, F.
Tetrahedron: Asymmetry 1996, 7, 1789–1796.
’ ACKNOWLEDGMENT
We thank Prof. Scott Nelson, Brad Hutnick, and Joanne
Bertonazzi for advice on β2,3 monomer synthesis and Dr.
Damodaran Krishnan and Sage Bowser for assistance configuring
solvent-suppressed NMR experiments. Funding for this work
was provided by the University of Pittsburgh.
’ REFERENCES
(1) For reviews, see: (a) Gellman, S. H. Acc. Chem. Res. 1998,
31, 173–180. (b) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.;
Moore, J. S. Chem. Rev. 2001, 101, 3893–4011. (c) Seebach, D.; Beck,
A. K.; Bierbaum, D. J. Chem. Biodiversity 2004, 1, 1111–1239. (d)
Bautista, A. D.; Craig, C. J.; Harker, E. A.; Schepartz, A. Curr. Opin. Chem.
Biol. 2007, 11, 685–692. (e) Goodman, C. M.; Choi, S.; Shandler, S.;
DeGrado, W. F. Nat. Chem. Biol. 2007, 3, 252–262.
(17) Wishart, D. S.; Sykes, B. D.; Richards, F. M. J. Mol. Biol. 1991,
222, 311–333.
(18) (a) Robinson, J. A. Acc. Chem. Res. 2008, 41, 1278–1288. (b)
Srinivas, N.; et al. Science 2010, 327, 1010–1013.
(2) Dill, K. A.; Ozkan, S. B.; Weikl, T. R.; Chodera, J. D.; Voelz, V. A.
Curr. Opin. Struct. Biol. 2007, 17, 342–346.
(3) For examples of protein recognition, see: (a) Kritzer, J. A.; Lear,
J. D.; Hodsdon, M. E.; Schepartz, A. J. Am. Chem. Soc. 2004,
126, 9468–9469. (b) Sadowsky, J. D.; Schmitt, M. A.; Lee, H. S.;
Umezawa, N.; Wang, S. M.; Tomita, Y.; Gellman, S. H. J. Am. Chem.
Soc. 2005, 127, 11966–11968.
(4) Horne, W. S.; Gellman, S. H. Acc. Chem. Res. 2008,
41, 1399–1408.
4249
dx.doi.org/10.1021/ja2002346 |J. Am. Chem. Soc. 2011, 133, 4246–4249