1996, 96, 115; (f) H. Pellissier, Tetrahedron, 2006, 62, 1619;
(g) H. Pellissier, Tetrahedron, 2006, 62, 2143; (h) T.-L. Ho, Tandem
Organic Reactions, Wiley, New York, 1992, p. 502; (i) R. A. Bunce,
Tetrahedron, 1995, 51, 13103.
2 S. Iwata, T. Hamura and K. Suzuki, Chem. Commun., 2010, 46,
2211.
3 (a) M. L. Graziano, M. R. Iesce and F. Cermola, Synthesis, 1994,
149; (b) E. V. Dehmlow and A. L. Veretenov, Synthesis, 1992, 939.
4 J. Choi, E. Imai, M. Mihara, Y. Oderatoshi, S. Minakata and
M. Komatsu, J. Org. Chem., 2003, 68, 6164.
Scheme 5 [2+2] Cycloaddition of phenyl-substituted ynoate 20.
5 (a) L. M. Bishop, R. E. Roberson, R. G. Bergman and D. Trauner,
Synthesis, 2010, 2233; (b) H. W. Sunnemann, M. G. Banwell and
¨
A. de Meijere, Eur. J. Org. Chem., 2007, 3879; (c) R. von Essen,
D. Frank, H. W. Sunnemann, D. Vidovic, J. Magull and A. de
¨
Meijere, Chem.–Eur. J., 2005, 11, 6583; (d) N. A. Magomedov,
P. L. Ruggiero and Y. Tang, J. Am. Chem. Soc., 2004, 126, 1624.
6 For reviews of cyclobutene derivatives, see: J. L. Segura and
N. Martin, Chem. Rev., 1999, 99, 3199.
7 For our contributions, see: (a) T. Matsumoto, T. Hamura,
M. Miyamoto and K. Suzuki, Tetrahedron Lett., 1998, 39, 4853;
(b) T. Hamura, M. Miyamoto, T. Matsumoto and K. Suzuki, Org.
Lett., 2002, 4, 229; (c) T. Hamura, M. Miyamoto, K. Imura,
T. Matsumoto and K. Suzuki, Org. Lett., 2002, 4, 1675;
(d) T. Hamura, T. Suzuki, T. Matsumoto and K. Suzuki, Angew.
Chem., Int. Ed., 2006, 45, 6294.
Scheme
6 Domino pericyclic reaction of fully substituted
cyclobutenes.
8 Initially formed triene as IV by the ring opening of 6 was not
detected.
We were pleased to find that, upon heating, cyclobutene 22
having a 2-methylbut-2-enoyl group and a phenyl group on the
four-membered ring underwent the domino reaction smoothly,
giving hexa-substituted benzene 23 in 77% yield (Scheme 6).
Similarly, the related substrate 24 with a cyclohexenylcarbonyl
group was cleanly converted to poly-substituted dihydro-
phenanthrene 25.
9 All new compounds were fully characterized by spectroscopic
means and combustion analysis. For details, see ESIw.
10 Due to its high reactivity, the [2+2] cycloadduct easily isomerized
to the corresponding ring opened product during purification.
11 For the conrotatory ring opening of substituted cyclobutenes,
outward rotation becomes more preferred, as the donor character
of the substituent increases. In the case of fully oxygenated
cyclobutene Aa (X=Y=OMe), one of the two methoxy groups
has to rotate inward, which is energetically unpreferable. For
theoretical studies on torquoselectivity, see: (a) N. G. Rondan
and K. N. Houk, J. Am. Chem. Soc., 1985, 107, 2099;
(b) K. N. Houk, D. C. Spellmeyer, C. W. Jefford,
C. G. Rimbault, Y. Wang and R. D. Miller, J. Org. Chem.,
1988, 53, 2125.
In summary, we described domino pericyclic reactions to
poly-substituted 6-membered compounds by reaction of the
alkenyl alkynyl ketone with KSA. Further studies are currently
in progress.
12 Calculation showed that steric effects pose a larger influence on the
preference for inward/outward rotation of the substituent in the
substituted 1,3,5-hexatrienes, see: J. D. Evanseck, B. E. Thomas
IV, D. C. Spellmeyer and K. N. Houk, J. Org. Chem., 1995, 60,
7134.
13 Stereochemistry of the cyclobutene and hexatriene intermediates in
the reaction of KSA 2b was not determined.
14 For preparation, see ESI.w See also ref. 2.
Notes and references
1 (a) A. Steve and B. Louis, Chem. Commun., 2007, 2211;
(b) K. C. Nicolaou, D. J. Demonds and P. G. Bulger, Angew.
Chem., Int. Ed., 2006, 45, 7134; (c) L. F. Tietze, G. Brasche and
K. Gericke, Domino Reactions in Organic Synthesis, Wiley-VCH,
Weinheim, 2006, p. 672; (d) L. F. Tietze and U. Beifuss, Angew.
Chem., Int. Ed. Engl., 1993, 32, 131; (e) L. F. Tietze, Chem. Rev.,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6891–6893 6893