Journal of Medicinal Chemistry
ARTICLE
a nontransformed murine STAT3 dimer downloaded from the RCSB
Protein Data Bank (PDB code 3CWG).42 Energy-minimized 3D mol-
ecular topographies of the DAP compounds were obtained using the
Dundee PRODRG2 server.43 To identify the site on the STAT3 dimer
with the highest binding affinity for the DAP compounds, blind docking
was accomplished using 0.625 Å grid spacing with 128 points in each of
the X, Y, and Z directions. This grid covered the majority of the
previously defined 3CWG molecular structure, including the entire
SH2, linker, and DNA-binding domains, with partial coverage of the
coilꢀcoil domain.42 Specific docking at the preferential site identified
by blind docking was accomplished using 0.375 Å grid spacing with 100
points in each of the X, Y, and Z directions. Dockings were automatically
ranked by AutoDock according to the lowest calculated binding energies
(kcal/mol).
melanoma cells and modulates the cellular response to immunother-
apeutic cytokines. Mol. Cancer Ther. 2009, 8, 2726–2735.
(5) Ferguson, L. R.; Philpott, M. Cancer prevention by dietary
bioactive components that target the immune response. Curr. Cancer
Drug Targets 2007, 7, 459–464.
(6) Jobin, C.; Bradham, C. A.; Russo, M. P.; Juma, B.; Narula, A. S.;
Brenner, D. A.; Sartor, R. B. Curcumin blocks cytokine-mediated NF-kappa
B activation and proinflammatory gene expression by inhibiting inhibitory
factor I-kappa B kinase activity. J. Immunol. 1999, 163, 3474–3483.
(7) Kumar, S.; Narain, U.; Tripathi, S.; Misra, K. Syntheses of
curcumin bioconjugates and study of their antibacterial activities against
beta-lactamase-producing microorganisms. Bioconjugate Chem. 2001,
12, 464–469.
(8) Ahmad, N.; Katiyar, S. K.; Mukhtar, H. In Oxidants and Anti-
oxidants in Cutaneous Biology; Thiele, J., Elsner, P., Eds.; Karger: Basel,
Switzerland, 2001; pp 128ꢀ139.
(9) Dimmock, J. R.; Padmanilayam, M. P.; Puthucode, R. N.;
Nazarali, A. J.; Motaganahalli, N. L.; Zello, G. A.; Quail, J. W.; Oloo,
E. O.; Kraatz, H. B.; Prisciak, J. S.; Allen, T. M.; Santos, C. L.; Balzarini, J.;
De Clercq, E.; Manavathu, E. K. A conformational and structureꢀactiv-
ity relationship study of cytotoxic 3,5-bis(arylidene)-4-piperidones and
related N-acryloyl analogues. J. Med. Chem. 2001, 44, 586–593.
(10) Makarov, V. M.; Odinets, I. L.; Lyssenko, K. A.; Rybalkina, Y. E.;
Antipin, M. J.; Timofeeva, T. V. N-Alkylated 3,5-bis(arylidene)-4-
piperidones. Synthetic approaches, X-ray structure and anticancer
activity. J. Heterocycl. Chem. 2008, 45, 729–736.
’ ASSOCIATED CONTENT
S
Supporting Information. Synthesis and characterization
b
of all new compounds and details of biological assay. This material
’ AUTHOR INFORMATION
Corresponding Author
*Phone: 36-72-536-220. Fax: 36-72-536-219. E-mail: kalman.hideg@
aok.pte.hu.
(11) Das, U.; Molnꢀar, J.; Barꢀath, Z.; Bata, Z.; Dimmock, J. R. 1-[4-(2-
Aminoethoxy)phenylcarbonyl]-3,5-bis-(benyzlidene)-4-oxopiperidines:
a novel series of highly potent revertrands of P-glycoprotein associated
multidrug resistance. Bioorg. Med. Chem. Lett. 2008, 18, 3484–3487.
(12) Das, S.; Das, U.; Selvakumar, P.; Sharma, R. K.; Balzarini, J.; De
Clercq, E.; Molnꢀar, J.; Serly, J.; Barꢀath, Z.; Schatte, G.; Bandy, B.; Gorecki,
D. K. J.; Dimmock, J. R. 3,5-Bis(benzylidene)-4-oxo-1-phosphonopiper-
idines and related diethyl esters: potent cytotoxins with multi-drug-
resistance reverting properties. ChemMedChem 2009, 4, 1831–1840.
(13) Das, U.; Das, S.; Bandy, B.; Stables, J. P.; Dimmock, J. R.
N-Aroyl-3,5-bis(benzylidene)-4-piperidones: a novel class of antimyco-
bacterial agents. Bioorg. Med. Chem. 2008, 16, 3602–3607.
’ ACKNOWLEDGMENT
This work was supported by a grant from Hungarian National
Research Fund (Grants OTKA K 81123 and OTKA-NKTH
K67597). The authors thank Krisztina Kish for elemental analysis
and Zoltꢀan Berente (Department of Biochemistry and Medicinal
Chemistry, University of Pꢀecs, Hungary) for NMR measurements.
(14) Dinets, I. L.; Makarov, M. V.; Artyushin, O. I.; Ribalkina, E. Y.;
Lyssenko, K. A.; Timofeeva, T. V.; Antipin, M. Y. Phosphoryl substituted
3,5-bis(arilydene)-4-piperidones possessing high antitumor activity.
Phosphorus, Sulfur Silicon Relat. Elem. 2008, 183, 619–620.
(15) Makarov, M. V.; Rybalkina, E. Y.; Roschenthaler, G. V.; Short,
K. W.; Timofeeva, T. V.; Odinets, I. L. Design, cytotoxic and fluorescent
properties of novel N-phosphorylalkyl substituted E,E-3,5-bis(arylidene)-
piperid-4-ones. Eur. J. Med. Chem. 2009, 44, 2135–2144.
(16) Pati, H. N.; Das, U.; Das, S.; Bandy, B.; De Clercq, E.; Balzarini,
J.; Kawase, M.; Sakagami, H.; Quail, J. W.; Stables, J. P.; Dimmock, J. R.
The cytotoxic properties and preferential toxicity to tumour cells
displayed by some 2,4-bis(benzylidene)-8-methyl-8-azabicyclo[3.2.1]-
octan-3-ones and 3,5-bis(benzylidene)-1-methyl-4-piperidones. Eur. J.
Med. Chem. 2009, 44, 54–62.
’ ABBREVIATIONS USED
A2780, human epithelial cancer cell line; MCF-7, human breast
cancer cell line; H9c2, undifferentiated neonatal rat cardiomyo-
blasts; DAP, 3,5-bis(arylidene)-4-piperidones; ROS, reactive oxygen
species; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium bromide; STAT3, signal transducer and activator of tran-
scription 3; PARP, poly ADP-ribose polymerase; JAK, tyrosine
kinase; VEGF, vascular endothelial growth factor; DNA,
deoxyribonucleic acid; EPR, electron paramagnetic resonance
’ REFERENCES
(17) Das, U.; Sakagami, H.; Chu, Q.; Wang, Q.; Kawase, M.;
Selvakumar, P.; Sharma, K. R.; Dimmock, J. R. 3,5-Bis(benzylidene)-
1-[4-2-(morpholin-4-yl)ethoxyphenylcarbonyl]-4-piperidone hydro-
chloride: a lead tumor-specific cytotoxin which induces apoptosis and
autophagy. Bioorg. Med. Chem. Lett. 2010, 20, 912–917.
(1) Selvendiran, K.; Tong, L.; Bratasz, A.; Kuppusamy, L. M.;
Ahmed, S.; Ravi, Y.; Trigg, N. J.; Rivera, B. K.; Kꢀalai, T.; Hideg, K.;
Kuppusamy, P. Anticancer efficacy of a difluorodiarylidenyl piperidone
(HO-3867) in human ovarian cancer cells and tumor xenografts. Mol.
Cancer Ther. 2010, 9, 1169–1179.
(18) Lagisetty, P.; Vilekar, P.; Sahoo, K.; Anat, S.; Awasthi, W.
CLEFMA: an anti-proliferative curcuminoid from structureꢀactivity
relationship studies on 3,5-bis(benzylidene)-4-piperidones. Bioorg. Med.
Chem. 2010, 18, 6109–6120.
(19) Adams, B. K.; Cai, J.; Armstrong, J.; Herold, M.; Lu, Y. J.; Sun,
A.; Snyder, J. P.; Liotta, D. C.; Jones, D. P.; Shoji, M. EF24, a novel
synthetic curcumin analog, induces apoptosis in cancer cells via a redox-
dependent mechanism. Anti-Cancer Drugs 2005, 16, 263–275.
(20) Subramaniam, D.; May, R.; Sureban, S. M.; Lee, K. B.; George,
R.; Kuppusamy, P.; Ramanujam, R. P.; Hideg, K.; Dieckgraefe, B. K.;
Houchen, C. W.; Anant, S. Diphenyl difluoroketone: a curcumin
(2) Bharti, A. C.; Shishodia, S.; Reuben, J. M.; Weber, D.; Alexanian,
R.; Raj-Vadhan, S.; Estrov, Z.; Talpaz, M.; Aggarwal, B. B. Nuclear factor-
kappaB and STAT3 are constitutively active in CD138+ cells derived
from multiple myeloma patients, and suppression of these transcription
factors leads to apoptosis. Blood 2004, 103, 3175–3184.
(3) Kim, H. Y.; Park, E. J.; Joe, E. H.; Jou, I. Curcumin suppresses
Janus kinase-STAT inflammatory signaling through activation of Src
homology 2 domain-containing tyrosine phosphatase 2 in brain micro-
glia. J. Immunol. 2003, 171, 6072–6079.
(4) Bill, M. A.; Bakan, C.; Benson, D. M., Jr.; Fuchs, J.; Young, G.;
Lesinski, G. B. Curcumin induces proapoptotic effects against human
5420
dx.doi.org/10.1021/jm200353f |J. Med. Chem. 2011, 54, 5414–5421