3 (a) E. P. Horwitz, D. G. Kalina, H. Diamond, G. F. Vandegrift and W.
W. Schulz, Solvent Extr. Ion Exch., 1985, 3, 75; (b) J. N. Mathur, M. S.
Murali and K. L. Nash, Solvent Extr. Ion Exch., 2001, 19, 357; (c) J.
L. Gregg, V. G. Artem and F. V. George, Solvent Extr. Ion Exch., 2010,
28, 287.
4 (a) W. B. Lanham and T. C. Runion, USAEC Report ORNL-479, Oak
Ridge, Tennessee, 1949; (b) D. D. Sood and S. K. Patil, J. Radioanal.
Nucl. Chem., 1996, 203, 547; (c) A. P. Paiva and P. Malik, J. Radioanal.
Nucl. Chem., 2004, 261, 485.
Z. Anorg. Allg. Chem., 2001, 627, 2323; (g) N. J. Hill, W. Levason, M.
C. Popham, G. Reid and M. Webster, Polyhedron, 2002, 21, 445.
17 L. Fuks and M. Majdan, Miner. Proces. Extr. Metall. Rev., 2000, 21,
25.
18 I. Ferna´ndez, P. On˜a-Burgos, J. M. Oliva and F. Lo´pez-Ortiz, J. Am.
Chem. Soc., 2010, 132, 5193.
19 (a) I. Ferna´ndez, P. On˜a-Burgos, G. Ruiz-Gomez, C. Bled, S. Garc´ıa-
Granda and F. Lo´pez-Ortiz, Synlett, 2007, 611; (b) P. On˜a-Burgos, I.
Ferna´ndez, L. Roces, L. Torre-Ferna´ndez, S. Garc´ıa-Granda and F.
Lo´pez-Ortiz, Organometallics, 2009, 28, 1739.
5 (a) T. M. Ward, I. W. Allcox and G. H. Wahl Jr., Tetrahedron Lett.,
1971, 12, 4421; (b) F. Berny, N. Muzet, L. Troxler, A. Dedieu and
G. Wipff, Inorg. Chem., 1999, 38, 1244; (c) M. Baaden, F. Berny, C.
Boehme, N. Muzet, R. Schurhammer and G. Wipff, J. Alloys Compd.,
2000, 303–304, 104; (d) C. Boehme and G. Wipff, Inorg. Chem., 2002,
41, 727; (e) B. Coupez, C. Boehme and G. Wipff, Phys. Chem. Chem.
Phys., 2002, 4, 5716.
6 For recent references see: (a) M. Bosson, W. Levason, T. Patel, M. C.
Popham and M. Webster, Polyhedron, 2001, 20, 2055; (b) J. Fawcett,
A. W. G. Platt and D. R. Russell, Polyhedron, 2002, 21, 287; (c) J.-C.
Berthet, M. Nierlich and M. Ephritikhine, Polyhedron, 2003, 22, 3475;
(d) M. J. Glazier, W. Levason, M. L. Matthews, P. L. Thornton and M.
Webster, Inorg. Chim. Acta, 2004, 357, 1083; (e) A. P. Hunter, A. M.
J. Lees and A. W. G. Platt, Polyhedron, 2007, 26, 4865; (f) S. Mishra,
Coord. Chem. Rev., 2008, 252, 1996; (g) A. Bowden, A. W. G. Platt, K.
Singh and R. Townsend, Inorg. Chim. Acta, 2010, 363, 243.
7 For recent references see: (a) A. M. J. Lees and A. W. G. Platt, Inorg.
Chem., 2003, 42, 4673; (b) A. M. J. Lees and A. W. G. Platt, Polyhedron,
2005, 24, 427; (c) Z. Spichal, M. Necas and J. Pinkas, Inorg. Chem.,
2005, 44, 5673; (d) K. Matloka, A. K. Sah, M. W. Peters, P. Srinivasan,
A. V. Gelis, M. Regalbuto and M. J. Scott, Inorg. Chem., 2007, 46,
10549; (e) Z. Spichal, V. Petricek, J. Pinkas and M. Necas, Polyhedron,
2008, 27, 283; (f) M. A. Subhan, Y. Hasegawa, T. Suzuki, S. Kaizaki
and Y. Shozo, Inorg. Chim. Acta, 2009, 362, 136.
8 (a) B. M. Rapko, E. N. Duesler, P. H. Smith, R. T. Paine and R. R.
Ryan, Inorg. Chem., 1993, 32, 2164; (b) E. M. Bond, E. N. Duesler,
R. T. Paine and H. No¨th, Polyhedron, 2000, 19, 2135; (c) X. Gan, R.
T. Paine, E. N. Duesler and H. No¨th, Dalton Trans., 2003, 153; (d) X.
Gan, B. M. Rapko, E. N. Duesler, I. Binyamin, R. T. Paine and B. P.
Hay, Polyhedron, 2005, 24, 469; (e) S. Pailloux, C. E. Shirima, A. D.
Ray, E. N. Duesler, R. T. Paine, J. R. Klaehn, M. E. McIlwain and B P.
Hay, Inorg. Chem., 2009, 48, 3104.
9 (a) R. T. Paine, Y.-C. Tan and X.-M. Gan, Inorg. Chem., 2001, 40, 7009;
(b) A. G. Matveeva, E. I. Matrosov, Z. A. Starikova, G. V. Bodrin, S. V.
Matseev, P. V. Petrovskii and E. E. Nifant’ev, Russ. Chem. Bull., 2005,
54, 2519; (c) A. G. Matveeva, E. I. Matrosov, Z. A. Starikova, G. V.
Bodrin, S. V. Matseev and E. E. Nifant’ev, Russ. J. Inorg. Chem., 2006,
51, 253.
20 C. Popovici, P. On˜a-Burgos, I. Ferna´ndez, L. Roces, S. Garc´ıa-Granda,
M. J. Iglesias and F. Lo´pez-Ortiz, Org. Lett., 2010, 12, 428.
21 (a) P. Caravan, T. Hedlund, S. Liu, S. Sjobergand and C. Orvig, J. Am.
Chem. Soc., 1995, 117, 11230; (b) A. Fujiwara, Y. Nakano, T. Yaita and
K. Okuno, J. Alloys Compd., 2008, 456, 429.
22 M. F. Davis, W. Levason, G. Reid and M. Webster, Polyhedron, 2006,
25, 930.
23 M. A. Bennett, C. J. Cobley, A. D. Rae, E. Wenger and A. C Willis,
Organometallics, 2000, 19, 1522.
24 F. Bigoli, P. Deplano, M. L. Mercuri, M. A. Pellinghelli and E. F. Trogu,
Phosphorus, Sulfur Silicon Relat. Elem., 1992, 70, 145.
25 Ph2P(O)NMe2: (a) M. ul-Haque and C. N. Caughlan, J. Chem. Soc.,
Perkin Trans. 2, 1976, 1101; Ph2P(O)NMe(CH2)2Ph: (b) F. Cameron
and F. D. Duncanson, Acta Crystallogr., Sect. B: Struct. Crystallogr.
Cryst. Chem., 1981, 37, 1604; Ph2P(O)N(CH2)2: (c) B. Davidowitz, T.
A. Modro and M. L. Niven, Phosphorus Sulfur Relat. Elem., 1985, 22,
255.
26 (a) I. Ferna´ndez, A. Force´n-Acebal, S. Garc´ıa-Granda and F. Lo´pez-
Ortiz, J. Org. Chem., 2003, 68, 4472; (b) H. De Bod, D. B. G. Williams,
A. Roodt and A. Muller, Acta Crystallogr., Sect. E: Struct. Rep. Online,
2004, 60, o1241.
˚
27 A P–O bond distance of 1.506(2) A has been reported for an ortho-
stannyl N,N-diisopropylphosphinic amide showing intramolecular
oxygen–tin interaction. See reference 19b.
28 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and
R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
29 (a) D. R. Cousins and F. A. Hart, J. Inorg. Nucl. Chem., 1967, 29,
1745; (b) D. R. Cousins and F. A. Hart, J. Inorg. Nucl. Chem., 1968, 30,
3009.
30 The free ligand shows two P O stretching bands at 1227 and 1209
cm-1, whereas only a broad band is observed for complex 12.
31 (a) M. G. B. Drew, Coord. Chem. Rev., 1977, 24, 179; (b) R. M.
Hartshorn, E. Hey-Hawkins, R. Kalio and G. J. Leigh, Pure Appl.
Chem., 2007, 79, 1779.
32 X.-M. Gan, E. N. Duesler and R. T. Paine, Inorg. Chem., 2001, 40,
4420.
33 W. Levason, E. H. Newman and M. Webster, Polyhedron, 2000, 19,
10 K. Miyata, Y. Hasegawa, Y. Kuramochi, T. Nakagawa, T. Yokoo and
T. Kawai, Eur. J. Inorg. Chem., 2009, 4777.
2697.
34 An analogous arrangement is found in europium complexes of
tridentate triphosphine trioxides. See reference 10.
35 L. Troxler, A. Dedieu, F. Hutschka and G. Wipff, THEOCHEM, 1998,
431, 151.
11 (a) G. Vicentini and P. O. Dunstan, J. Inorg. Nucl. Chem., 1971, 33,
1749; (b) G. Vicentini and J. C. Prado, J. Inorg. Nucl. Chem., 1972, 34,
1309; (c) L. B. Zinner and G. Vicentini, Inorg. Chim. Acta, 1975, 15,
235; (d) L. R. F. Carvalho, G. Vicentini and K. Zinner, J. Inorg. Nucl.
Chem., 1981, 43, 1088; (e) J. R. Matos, L. B. Zinner, K. Zinner, G.
Vicentini and P. O. Dunstan, Thermochim. Acta, 1993, 219, 173.
12 (a) G. Vicentini and L. S. P. Braga, J. Inorg. Nucl. Chem., 1971, 33,
2959; (b) G. Vicentini and P. O. Dunstan, J. Inorg. Nucl. Chem., 1972,
34, 1303; (c) G. Vicentini, L. B. Zinner and L. Rothschild, Inorg. Chim.
Acta, 1974, 9, 213; (d) G. Vicentini and L. C. Machado, J. Inorg. Nucl.
Chem., 1981, 43, 1676.
36 J. L. Hoard and J. V. Silverton, Inorg. Chem., 1963, 2, 235.
37 E. M. Bond, X. Gan, J. R. FitzPatrick and R. T. Paine, J. Alloys Compd.,
1998, 271–273, 172.
38 Although the coupling of the isopropyl protons with 31P could not
be resolved, its existence was evidenced by the narrowing of the
corresponding signals when the 1H NMR spectrum was measured
under 31P decoupling. Additionally, this coupling allowed us to
establish the connectivity within the P(O)NiPr2 frameworks through
the correlations observed in the 1H, 31P-HMQC spectrum for the methyl
protons.
13 L. B. Zinner, G. Vicentini and L. Rothschild, J. Inorg. Nucl. Chem.,
1974, 36, 2499.
14 A. R. de Aquino, G. Bombieri, P. C. Isolani, G. Vicentini and J.
Zucherman-Schpector, Inorg. Chim. Acta, 2000, 306, 101.
15 E. E. Castellano, G. Oliva and J. Zuckerman-Schpector, Inorg. Chim.
Acta, 1985, 109, 33.
16 Phosphine oxide complexes: (a) M. J. McGeary, P. S. Coan, K. Folting,
W. E. Streib and K. G. Caulton, Inorg. Chem., 1991, 30, 1723; (b) W. A.
Herrmann, R. Anwander, V. Dufaud and W. Scherer, Angew. Chem.,
Int. Ed. Engl., 1994, 33, 1285; (c) L. Deakin, W. Levason, M. Popham,
G. Reid and M. Webster, J. Chem. Soc., Dalton Trans., 2000, 2439;
(d) W. Levason, B. Patel, M. C. Popham, G. Reid and M. Webster,
Polyhedron, 2001, 20, 2711; (e) Y.-C. Tan, X.-M Gan, J. L. Stanchfield,
E. N. Duesler and R. T. Paine, Inorg. Chem., 2001, 40, 2910; (f) A.
Tutab, M. Goldner, H. Hu¨cksta¨dt, U. Cornelissen and H. Homborg,
39 (a) D. Rehder, in Transition Metal Nuclear Magnetic Resonance, ed. P.
S. Pregosin, Elsevier, Amsterdam, 1991, pp. 1–58; (b) R. E. White and
T. P. Hanusa, Organometallics, 2006, 25, 5621.
40 (a) J. Kronenbitter and A. Schwenk, J. Magn. Reson., 1977, 25,
147; (b) R. M. Adam, G. V. Fazakerley and D. G. Reid, J. Magn.
Reson., 1979, 33, 655; (c) G. C. levy, P. L. Rinaldi and J. T. Bailey, J.
Magn. Reson., 1980, 40, 167; (d) J. Epinger, M. Spiegler, W. Hieringer,
W. A. Herrmann and R. Anwander, J. Am. Chem. Soc., 2000, 122,
3080.
41 D. L. Reger, J. A. Lindeman and L. Lebioda, Inorg. Chem., 1988, 27,
1890.
42 K. C. Hultzsch, P. Voth, K. Beckerle, T. P. Spaniol and J. Okuda,
Organometallics, 2000, 19, 228.
6702 | Dalton Trans., 2011, 40, 6691–6703
This journal is
The Royal Society of Chemistry 2011
©