Journal of the American Chemical Society
COMMUNICATION
A.; Risse, W. Macromolecules 1997, 30, 7375. (d) Curran, K.; Risse, W.;
Boggioni, L.; Tritto, I. Macromol. Chem. Phys. 2008, 209, 707. (e) Collins, S.;
Kelly, W. M. Macromolecules 1992, 25, 233. (f) Kelly, W. M.; Taylor, N. J.;
Collins, S. Macromolecules 1994, 27, 4477. (g) McLain, S. J.; Feldman, J.;
McCord, E. F.; Gardner, K. H.; Teasley, M. F.; Coughlin, E. B.; Sweetman,
K. J.; Johnson, L. K.; Brookhart, M. Macromolecules 1998, 31, 6705.
(4) Okada, T.; Takeuchi, D.; Shishido, A.; Ikeda, T.; Osakada, K.
J. Am. Chem. Soc. 2009, 131, 10852.
polymerization of cyclohexadiene and subsequent hydrogenation of the
resulting polymer or cationic polymerization of β-pinene followed by
hydrogenation. The former polymer has cis-cyclohexane-1,4-diyl groups,
and the stereoselectivity of the latter is unclear. See ref 2 and: Satoh, K.;
Sugiyama, H.; Kamigaito, M. Green Chem. 2006, 8, 878. Polymers
containing trans-cyclohexane-1,4-diyl groups in part were prepared by
copolymerization of ethylene with 1,3-butadiene. See ref 7.
(5) (a) Keaton, R. J.; Jayaratne, K. C.; Henningsen, D. A.; Koterwas,
L. A.; Sita, L. R. J. Am. Chem. Soc. 2001, 123, 6197. (b) Nomura, K.;
Itagaki, K. Macromolecules 2005, 38, 8121. (c) Grisi, F.; Pragliola, S.;
Costabile, C.; Longo, P. Polymer 2006, 47, 1930. (d) Segal, S.; Yeori, A.;
Shuster, M.; Rosenberg, Y.; Kol, M. Macromolecules 2008, 41, 1612. (e)
Alfonzo, C. G.; Fleury, G.; Chaffin, K. A.; Bates, F. S. Macromolecules
2010, 43, 5295.
(6) Cationic isomerization polymerization of vinyl- and allylcyclo-
hexanes affords polymers having cyclohexane-1,1-diyl substituents on
their chains. See: (a) Ketley, A. D.; Ehrig, R. J. J. Polym. Sci., Part A:
Polym. Chem. 1964, 2, 4461. (b) Kennedy, J. P.; Elliott, J. J.; Naegele, W.
J. Polym. Sci., Part A: Polym. Chem. 1964, 2, 5029.
(7) Thuilliez, J.; Ricard, L.; Nief, F.; Boisson, F.; Boisson, C.
Macromolecules 2009, 42, 3774.
(8) (a) Gillies, D. G.; Matthews, S. J.; Sutcliffe, L. H. Magn. Reson.
Chem. 1991, 29, 777. (b) Liu, G.-B.; Zhao, H.-Y.; Dai, L.; Thiemann, T.;
Tashiro, H.; Tashiro, M. J. Chem. Res., Synop. 2009, 579.
(9) (a) Tempel, D. J.; Johnson, L. K.; Huff, R. L.; White, P. S.;
Brookhart, M. J. Am. Chem. Soc. 2000, 122, 6686. (b) Shultz, L. H.;
Tempel, D. J.; Brookhart, M. J. Am. Chem. Soc. 2001, 123, 11539. (c)
McCord, E. F.; McLain, S. J.; Nelson, L. T. J.; Ittel, S. D.; Tempel, D.;
Killian, C. M.; Johnson, L. K.; Brookhart, M. Macromolecules 2007,
40, 410–420.
(10) We conducted a kinetic study of the cyclopolymerization of 1,6-
dienes catalyzed by Pd complexes and observed apparent zeroth-order
kinetics of the reaction only at a high monomer concentration (1.0 M).
The kinetics in this study was measured at a monomer concentration
much lower than that required for pseudo-zeroth-order conditions. See:
Park, S.; Okada, T.; Takeuchi, D.; Osakada, K. Chem.—Eur. J. 2010,
16, 8662.
(11) A linear increase in the molecular weight of the produced
polymer with reaction time was observed in the polymerization of
ethylene and R-olefins by Pd diimine complexes. See: (a) Gottfried,
A. C.; Brookhart, M. Macromolecules 2001, 34, 1140. (b) Gottfried,
A. C.; Brookhart, M. Macromolecules 2003, 36, 3085.
(12) (a) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000,
100, 1169. (b) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem.
Soc. 1995, 117, 6414.
(13) (a) Guan, Z.; Cotts, P. M.; McCord, E. F.; McLain, S. J. Science
1999, 283, 2059. (b) Held, A.; Mecking, S. Chem.—Eur. J. 2000, 6, 4623.
(c) Mecking, S. Coord. Chem. Rev. 2000, 203, 325. (d) Camacho, D. H.;
Guan, Z. Chem. Commun. 2010, 46, 7879. (e) Xu, Y.; Xiang, P.; Ye, Z.;
Wang, W.-J. Macromolecules 2010, 43, 8026.
(14) (a) Park, S.; Takeuchi, D.; Osakada, K. J. Am. Chem. Soc. 2006,
128, 3510. (b) Okada, T.; Park, S.; Takeuchi, D.; Osakada, K. Angew.
Chem., Int. Ed. 2007, 46, 6141. (c) Okada, T.; Takeuchi, D.; Osakada, K.
Macromolecules 2010, 43, 7998. (d) Motokuni, K.; Okada, T.; Takeuchi,
D.; Osakada, K. Macromolecules 2011, 44, 751.
(15) β-Hydrogen elimination occurs with suprafacial stereochemistry,
although a few papers have presented exceptional reactions of alkyl com-
plexes. See: (a) Peng, T.-S.; Gladysz, J. A. J. Am. Chem. Soc. 1992, 114, 4174.
(b) Peng, T.-S.; Wang, Y.; Arif, A. M.; Gladysz, J. A. Organometallics 1993,
12, 4535. (c) Peng, T.-S.; Pu, J.; Gladysz, J. A. Organometallics 1994, 13, 929.
(16) Alkenylcyclopentanes do not polymerize smoothly under the
same conditions. This can be ascribed to the low stability of the intermediate
with cyclopentyl or cyclopentene as the ligand (corresponding to D2 and
D3 in Scheme 2). Further studies of the reaction pathway and intermediates
are needed to clarify this issue.
(17) Polymers with 1,4-disubstituted cyclohexanediyl groups in the
polymer chain were prepared by stepwise reactions involving anionic
11109
dx.doi.org/10.1021/ja2043968 |J. Am. Chem. Soc. 2011, 133, 11106–11109