Z. Dong et al. / Tetrahedron Letters 52 (2011) 3433–3436
3435
Table 3
Substrate scope for catalytic asymmetric Michael additiona
O
O
H
OH
COOR2
OH
OH
O
O
O
L5 / Ni(acac)2 (1:1, 5 mol%)
R1
O
X
+
X
N
R1
COOR2
4 Å MS, ClCH2CH2Cl, 0 o
C
MeO
O
O
O
O
O
Ni
O
O
4a-4q
HN
2
1
O
NH
2a: X = H
2b: X = 6-CH3
4a-p: X = H
4q: X = 6-CH3
1a-o: R2 = Me
1p: R2 = Et
N
Figure 2. The proposed transition state.
Entry
2
1
Time (h)
Yieldb (%)
eec (%)
X
R1, R2
1
H
H
H
H
H
Ph, Me (1a)
4
4
4
4
4
99
99
99
99
99
89 (S)d
89
89 (S)
87
Acknowledgments
2
3
4
5
3-MeC6H4, Me (1b)
4-MeC6H4, Me (1c)
3-MeOC6H4, Me (1d)
4-MeOC6H4, Me (1e)
We thank the National Natural Science Foundation of China
(Nos. 20732003 and 21021001), PCSIRT (No. IRT0846), and the Na-
tional Basic Research Program of China (973 Program: No.
2011CB808600) for financial support, and Sichuan University Ana-
lytical & Testing Centre for NMR analyses.
88
O
, Me (1f)
6
H
5
98
89
O
7
8
9
H
H
H
H
H
H
H
H
H
H
4-PhC6H4, Me (1g)
3-ClC6H4, Me (1h)
4-ClC6H4, Me (1i)
3-BrC6H4, Me (1j)
4-BrC6H4, Me (1k)
4-FC6H4, Me (1l)
2-Naphthyl, Me (1m)
2-Thienyl, Me (1n)
PhCH@CH, Me (1o)
Ph, Et (1p)
4
10
4
5
4
4
4
6
10
9
98
78
99
89
99
99
97
98
96
98
98
87
89
Supplementary data
87 (S)
87
89 (S)
90 (S)
89
87
89
85 (S)
87
10
11
12
13
14
15
16
17
Supplementary data associated with this article can be found, in
References and notes
6-CH3
Ph, Me (1a)
4
1. For selected reviews on coumarin, see: (a) Murray, R. D. H.; Mendez, J.; Brown, S.
A. The Natural Coumarins; Wiley: New York, 1982; (b) Manolov, I.; Danchev, N. D.
Eur. J. Med. Chem. 1995, 30, 531; (c) Li, H.-Y.; Robinson, A. J.; Feaster, J.
Tetrahedron Lett. 1996, 37, 1551; (d)The Handbook of Natural Flavonoids;
Harborne, J. B., Baxter, H., Eds.; Wiley: Chichester, UK, 1999; (e) Fylaktakidou,
K. C.; Hadjipavlou-Litina, D. J.; Litinas, K. E.; Nicolaides, D. N. Curr. Pharm. Des.
a
Unless otherwise noted, the reactions were performed with 2 (0.10 mmol), 1
(0.11 mmol), N,N0-dioxide L5 (0.005 mmol), Ni(acac)2 (0.005 mmol), 4 Å MS 10 mg
in 1 mL ClCH2CH2Cl at 0 °C for required time.
b
Yield of isolated product.
c
ˇ
Determined by HPLC analysis.
2004, 10, 3813; (f) Shen, H. C. Tetrahedron 2009, 65, 3931; (g) Núnez, M. G.;
García, P.; Moro, R. F.; Díez, D. Tetrahedron 2010, 66, 2089.
The absolute configuration was determined by comparing with literature.7c
d
2. For selected reviews, see: (a) Rowe, F. P.; Plant, C. J.; Bradfield, A. J. Hyg. 1981, 87,
171; (b) Ufer, M. Clin. Pharmacokinet. 2005, 44, 1227; (c) Visser, L. E.; van Schaik,
R. H. N.; van Vliet, M.; Trienekens, P. H.; De Smet, P. A. G. M.; Vulto, A. G.;
Hofman, A.; van Duijn, C. M.; Stricker, B. H. C. Clin. Pharmacol. Ther. 2005, 77,
479; (d) Manolopoulos, V. G.; Ragia, G.; Tavridou, A. J. Pharm. Pharmacol.
Pharmacogenomics 2010, 11, 493.
4-hydroxycoumarin 2a could only attack the Re face of the doube
bond for which the Si face of the doube bond was hindered by
the sterically bulky group. The corresponding product 4a was
afforded with the S configuration.
3. Schmidt, W.; Jahnchen, E. J. Pharm. Pharmacol. 1977, 29, 266.
4. Selected methods for the synthesis of warfarin, see: (a) Demir, A. S.; Tanyeli, C.;
Gülbeyaz, V.; Akgün, H. Turk. J. Chem. 1996, 20, 139; (b) Robinson, A.; Li, H.-Y.;
Feaster, J. Tetrahedron Lett. 1996, 37, 8321; (c) Tsuchiya, Y.; Hamashima, Y.;
Sodeoka, M. Org. Lett. 2006, 8, 4851; (d) Cravotto, G.; Nano, G. M.; Palmisano, G.;
Tagliapietra, S. Tetrahedron: Asymmetry 2001, 12, 707.
5. Direct Michael reaction for the synthesis of chiral warfarin, see: (a) Halland, N.;
Hansen, T.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2003, 42, 4955; (b) Kim, H.;
Yen, C.; Preston, P.; Chin, J. Org. Lett. 2006, 8, 5239; (c) Xie, J.-W.; Yue, L.; Chen,
W.; Du, W.; Zhu, J.; Deng, J.-G.; Chen, Y.-C. Org. Lett. 2007, 9, 413; (d) Kristensen,
T. E.; Vestli, K.; Hansen, F. K.; Hansen, T. Eur. J. Org. Chem. 2009, 5185; (e) Dong,
Z. H.; Wang, L. J.; Chen, X. H.; Liu, X. H.; Lin, L. L.; Feng, X. M. Eur. J. Org. Chem.
2009, 5192; (f) Yang, H.-M.; Gao, Y.-H.; Li, L.; Jiang, Z.-Y.; Lai, G.-Q.; Xia, C.-G.;
Xu, L.-W. Tetrahedron Lett. 2010, 51, 3836.
In summary, we have developed a highly enantioselective
Michael addition of cyclic 1,3-dicarbonyl compound to b,
rated
The reaction performed well for a range of substituted b,
rated
c
-unsatu-
a
-ketoester catalyzed by N,N0-dioxide–Ni(acac)2 complex.
c-unsatu-
a
-ketoester and cyclic 1,3-dicarbonyl compounds, giving the
desired warfarin analogues in excellent yields (up to 99%) with high
enantioselectivities (up to 90% ee). Based on experimental results, a
possible transition state has been proposed. Further application of
the methodology is ongoing.
6. For selected examples about b,c-unsaturated a-ketoester as Michael accepter,
see: (a) Herrera, R. P.; Monge, D.; Martín-Zamora, E.; Fernández, R.; Lassaletta, J.
OH
COOMe
OH
O
O
L5 / Ni(acac)2 (1:1, 5 mol%)
4 Å MS, ClCH2CH2Cl, 0 oC
Ph
+
Ph
COOMe
O
O
O
O
1a
4r, 95% yield, 81% ee
3
Scheme 1. 4-Hydroxy-6-methyl-2-pyrone was used as nucleophilic reagent.