3
3h), which has the propensity to undergo cyclopropenation,[14]
as well as carbene-alkyne metathesis[15] with rhodium
carbenoids. The structure of the compound 3g was further
confirmed by the single crystal X-ray structure and the geometry
of the double bond is found to be Z-isomer (Figure 4).[16a]
Finally, the cascade was attempted with vinyldiazo 2c bearing a
trichloroethyl ester side-chain. To our delight, the cascade
proceeded in high yield to provide azacycle scaffold 3i.
Moreover, the structure of the compound 3i was also confirmed
by the single crystal X-ray structure (Figure 4).[16b]
starting materials to provide functionalized azacycles. An
important feature of this transformation is its high chemo- and
regio-selectivity. Furthermore, the straightforward synthesis of
medium-sized azacycles would allow exploration of this less-
charted area of chemical space, which is currently occupied with
heterocycles having small (4-7 atoms) rings and macrocycles.
Acknowledgments
We thank Dr. Susan Nimmo, Dr. Steven Foster, and Dr. Douglas
R. Powell from the Research Support Services, University of
Oklahoma, for expert NMR, mass spectral, and X-ray
crystallographic analyses respectively. The work was supported
by NSF CHE-1753187, and American Chemical Society
Petroleum Research Fund (ACS-PRF) Doctoral New Investigator
grant (PRF no. 58487-DNI1).
Ph
O
O
Ph
Ph
N
N
Bn
BnO
Bn
O
Cl3C
O
O
3g
3i
References and notes
[1] (a) A. Hussain, S. K. Yousuf, D. Mukherjee, RSC Adv. 4 (2014)
43241–43257; (b) X.-M. Zhang, Y.-Q. Tu, F.-M. Zhang, H. Shao,
X. Meng, Angew. Chem. Int. Ed. 50 (2011) 3916–3919; (c) B. M.
Trost, A. C. Burns, M. J. Bartlett, T. Tautz, A. H. Weiss, J. Am.
Chem. Soc. 134 (2012) 1474–1477; (d) Y. Kasai, N. Michihata, H.
Nishimura, T. Hirokane, H. Yamada, Angew. Chem. Int. Ed. 51
(2012) 8026–8029; (e) A. Frichert, P. G. Jones, T. Lindel, Angew.
Chem. Int. Ed. 55 (2016) 2916–2919; (f) F.-X. Wang, J.-Y. Du,
H.-B. Wang, P.-L. Zhang, G.-B. Zhang, K.-Y. Yu, X.-Z. Zhang,
X.-T. An, Y.-X. Cao, C.-A. Fan, J. Am. Chem. Soc. 139 (2017)
4282–4285; (g) R. Mendoza-Sanchez, V. B. Corless, Q. N. N.
Nguyen, M. Bergeron-Brlek, J. Frost, S. Adachi, D. J. Tantillo, A.
K. Yudin, Chem. Eur. J. 23 (2017) 13319–13322.
[2] A. R. Khan, J. C. Parrish, M. E. Fraser, W. W. Smith, P. A.
Bartlett, and M. N. G. James. Biochemistry 37 (1998) 16839–
16845.
[3] (a) Y.-U. Kwon, T. Kodadek, Chemistry & Biology 14 (2007)
671–677; (b) T. Rezai, B. Yu, G. L. Millhauser, M. P. Jacobson,
R. S. Lokey, J. Am. Chem. Soc. 128 (2006) 2510–2511.
Figure 4. X-ray crystal structure of azacycle 3g and 3i
The reaction pathway for the synthesis of azacycles can be
plausibly rationalized by the following mechansim (Scheme
2).[13] First, vinyldiazo 2 is decomposed by the dirhodium
carboxylate to form a rhodium vinylcarbenoid that undergoes a
chemoselective nitrogen insertion/aldol cyclization to provide
indoline 4.[17a] The indoline intermediate 4 sets the stage for a
thermally driven concerted oxy-Cope rearrangement, which
results in an enol-form. The enol-form then rearranges to the
thermodynamically more stable keto-form 3. Moreover, the
formation of Z-isomer could be explained based on the boat
transition state of the cycloadduct intermediate. In addition to this
proposed mechanism, it is also plausible that the reaction
proceeds through a metal dissociated ammonium ylide trapping
mechanism.[17b]
[4] E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 57 (2014)
10257–10274.
[5] Y. Choi, H. Kim, S. B. Park, Chem. Sci. 10 (2019) 569–575.
[6] For reviews on medium-sized rings, see: (a) G. Illuminati, L.
Mandolini, Acc. Chem. Res. 14 (1981) 95–102; (b) L. Yet, Chem.
Rev. 100 (2000) 2963–3007; (c) K. C. Majumdar, RSC Adv. 1
(2011) 1152–1170; (d) A. Sharma, P. Appukkuttan, E. Van der
Eycken, Chem. Commun. 48 (2012) 1623–1637. Synthesis of
medium sized azacycles through linear precursor, see: (e) J. E.
Hall, J. V. Matlock, J. W. Ward, K. V. Gray, J. Clayden, Angew.
Chem., Int. Ed. 55 (2016) 11153–11157; (f) R. W. Shaw, T.
Gallagher, J. Chem. Soc., Perkin Trans. 1 (1994) 3549–3555; (g)
T. M. A. Barlow, M. Jida, K. Guillemyn, D. Tourwe, V. Caveliers,
S. Ballet, Org. Biomol. Chem. 14 (2016) 4669–4677; (h) Z. Li, A.
Kumar, D. D. Vachhani, S. K. Sharma, V. S. Parmar, E. V. Van
der Eycken, Eur. J. Org. Chem. (2014) 2084–2091; (i) K. C.
Majumdar, K. Ray, S. Ganai, Tetrahedron Lett. 51 (2010) 1736–
1738; (j) B. A. Aderibigbe, I. R. Green, T. Mabank, M. Janse van
Rensburg, G. L. Morgans, M. A. Fernandes, J. P. Michael, W. A.
L. van Otterlo, Tetrahedron 73 (2017) 4671–4683; (k) L.-C. Yang,
Z.-Q. Rong, Y.-N. Wang, Z. Y. Tan, M. Wang, Y. Zhao, Angew.
Chem., Int. Ed. 56 (2017) 2927–2931.
[7] (a) M. Szostak, J. Aubé, Org. Lett. 11 (2009) 3878–3881 (b) C.-V.
T. Vo, M. U. Luescher, J. W. Bode, Nat. Chem. 6 (2014) 310–
314.
[8] A. Deiters, S. F. Martin, Chem. Rev. 104 (2004) 2199–2238.
[9] (a) J. E. Hall, J. V. Matlock, J. W. Ward, K. V. Gray, J. Clayden,
Angew. Chem. Int. Ed. 55 (2016) 11153–11157; (b) J. E. Hill, J.
V. Matlock, Q. Lefebvre, K. G. Cooper, J. Clayden. Angew.
Chem. Int. Ed. 57 (2018) 5788–5791; (c) T. C. Stephens, M. Lodi,
A. M. Steer, Y. Lin, M. T. Gill, W. P. Unsworth, Chem. Eur. J. 23
(2017) 13314–13318.
R2
N2
HO
2
Rh2L4
R3O
N2
O
R
R
OR3
N
R1
O
4
O
R2
Rh2L4
R2
L4Rh2
R3O
R
HO
N
N–H
insertion
H
R1
O
OR3
O
OR3
N
O
1O
R
R2
O
R
oxy-Cope
R1
N
H
1
R2
R2
OH
Keto-enol
R
R
N
N
R1
OR3
3
OR3
R1
O
O
Scheme 2. Plausible reaction mechanism for the synthesis of azacycles
[10] Synthesis of medium-sized azacycles through ring expansion, see:
(a) C. Kitsiou, J. J. Hindes, P. I'Anson, P. Jackson, T. C. Wilson,
E. K. Daly, H. R. Felstead, P. Hearnshaw, W. P. Unsworth,
Angew. Chem., Int. Ed. 2015, 54, 15794–15798; (b) A. Klapars,
S. Parris, K. W. Anderson, S. L. Buchwald, J. Am. Chem. Soc.
3. Conclusion
In summary, the reported rhodium carbenoid initiated cascade
approach is convergent in nature and uses readily accessible