plane. The steric hindrance gives rise to dihedral angles between
the axis and the PbN4 of 64.49◦ rather than the ideal geometry of
90◦.
2 J. P. Wibaut and G. L. C. La Bastide, Recl. Trav. Chim. Pays-Bas, 1933,
52, 493; P. L. Dedert, T. Sorrell, T. J. Marks and J. A. Ibers, Inorg.
Chem., 1982, 21, 3506; J. Pe´rez, D. Dorales, L. A. Garc´ıa-Escudero, H.
Mart´ınez-Garc´ıa, D. Miguel and P. Bernad, Dalton Trans., 2009, 375.
3 P. L. Jones, A. J. Amoroso, J. C. Jeffery, J. A. McCleverty, E. Psillakis,
L. H. Rees and M. D. Ward, Inorg. Chem., 1997, 36, 10; H. D. Bari and
N. Zimmer, Inorg. Chem., 2004, 43, 3344.
Conclusion
4 K. Kurtev, D. Ribola, R. A. Jones, D. J. Cole-Hamilton and G.
Wilkinson, J. Chem. Soc., Dalton Trans., 1980, 55; P. A. Anderson,
F. R. Keene, E. Horn and E. R. T. Tiekink, Appl. Organomet. Chem.,
1990, 4, 523.
5 R. T. Jonas and T. D. P. Stack, Inorg. Chem., 1998, 37, 6615; B. B.
Moubaraki, A. Leita, G. J. Halder, S. R. Batten, J P. Ensen, J. D. Smith,
J. D. Cashion, C. J. Kepert, J. F. Le´tard and K. S. Murray, Dalton
Trans., 2007, 4413.
6 M. Kodera, K. Katayama, Y. Tachi, K. Kano, S. Hirota, S. Fujinami
and M. J. Suzuki, J. Am. Chem. Soc., 1999, 121, 11006; M. Kodera, Y.
Tachi, T. Kita, H. Kobushi, Y. Sumi, K. Kano, M. Shiro, M. Koikawa,
T. Tokii, M. Ohba and H. Okawa, Inorg. Chem., 2000, 39, 226.
7 M. C. Cushion, J. Meyer, A. Heath, A. D. Schwarz, I. Ferna´ndez, F.
Breher and P. Mountford, Organometallics, 2010, 29, 1174.
8 J. W. Canary, S. Mortezaei and J. Liang, Chem. Commun., 2010, 46,
5850.
Two novel tripodal naphthyridyl derivatives, L1 and L2, were
prepared and structurally characterized. The crystal structures
showed that the hydrogen atom at the central carbon atom
transfers to an adjacent naphthyridine-N, thereby forming a large
molecular conjugated structure. Furthermore, this transfer was
characterized by a lowest-energy absorption spectrum centered at
~540 nm. The geometric configuration conversion of the central
carbon in both compounds from sp2 to sp3 was induced by the
coordination of Pb(II) and Cu(I) with the naphthyridyl ligands
which chelate in a tridentate mode with three naphthyridine-N
atoms adjacent to the central carbon atom. The conversions were
accompanied by color changes from red to colorless or pale yellow
in organic solvents and confirmed by crystal structure analysis of
complexes 1–4. The results revealed that 1,3-hydrogen migration
from the splitting of the N–H bond to forming a C–H bond is
dependent on the binding modes of L1 and L2 with metal cations.
The chelating mode favors configuration conversion, which was
fully confirmed by spectral changes with various H+, Cu+ and Pb2+
concentrations. The observed absorption spectral red-shift upon
addition of HBF4 reflects the combined H+ to naphthyrindine-
N depression of the p* energy level for intramolecular charge
transfer, and indicates that the central carbon atoms of L1 and L2
still retain their original geometric configuration. In the presence
of the metal cation the naphthyridine-receptor moiety of the H-
transfer was considered to be metal-free when the ratio of the metal
salt with L1–2 was below 0.5 : 1. However, increasing the metal salt
concentration leads to an H-transfer and the formation of the
M–N bond at N–H, and affords the complex with a geometric
configuration conversion of the ligand compared to the original
ligand. Moreover, the molecular energy changes obtained by
density functional theory fully support these experimental results;
free L1 and L2 have higher stability than the other corresponding
five possible compounds. The obtained results presented a new
approach for the capability of L1 and L2 to recognize heavy
metal ions such as Pb2+ and provided a new perspective for the
development of new tripodal naphthyridyl derivatives.
9 K. Matsumoto, M. Kannami and M. Oda, Tetrahedron Lett., 2003, 44,
2861.
10 K. Matsumoto, M. Kannami, D. Inokuchi, H. Kurata, T. Kawase and
M. Oda, Org. Lett., 2007, 9, 2903.
11 Y. Tsuzuki, K. Tomita, K. I. Shibamori, Y. Sato, S. Kashimoto and
K. Chiba, J. Med. Chem., 2004, 47, 2097; Q. D. You, Z. Y. Li, C. H.
Huang, Q. Yang, X. J. Wang, Q. L. Guo, X. G. Chen, X. G. He, T. K.
Li and J. W. Chern, J. Med. Chem., 2009, 52, 5649.
12 T. F. A. de Greef, G. B. W. L. Ligthart, M. Lutz, A. L. Spek, E. W.
Meijer and R. P. J. Sijbesma, J. Am. Chem. Soc., 2008, 130, 5479; F.
Takei, M. Igarashi, M. Hagihara, Y. Oka, Y. Soya and K. Nakatani,
Angew. Chem., Int. Ed., 2009, 48, 7822; N. Minakawa, S. Ogata, M.
Takahashi and A. Matsuda, J. Am. Chem. Soc., 2009, 131, 1644; Y.
Ferrand, A. M. Kendhale, J. Garric, B. Kauffmann and I. Huc, Angew.
Chem., Int. Ed., 2010, 49, 1778.
13 S. H. Lu, S. Selvi and J. M. Fang, J. Org. Chem., 2007, 72, 117; H. M.
Zhang, W. F. Fu, J. Wang, X Gan, Q. Q. Xu and S. M. Chi, Dalton
Trans., 2008, 6817.
14 S. A. Moya, R. Schmidt, R. Pastene, R. Sartori, U. Mu¨ller and G.
Frenzen, Organometallics, 1996, 15, 3463; M. Majumdar, S. K. Patra,
M. Kannan, K. R. Dunbar and J. K. Bera, Inorg. Chem., 2008, 47,
2212; A. Sinha, S. M. W. Rahaman, M. Sarkar, B. Saha, P. Daw and J.
K. Bera, Inorg. Chem., 2009, 48, 11114.
15 I. P. C. Liu, C. H. Chen, C. F. Chen, G. H. Lee and S. M. Peng, Chem.
Commun., 2009, 577; I. P. C. Liu, W. Z. Wang and S. M. Peng, Chem.
Commun., 2009, (29), 4323.
16 J. L. Katz, B. J. Geller and P. D. Foster, Chem. Commun., 2007,
1026.
17 M. F. Mayer, S. Nakashima and S. C. Zimmerman, Org. Lett., 2005, 7,
3005; Y. Y. Sun, J. H. Liao, J. M. Fang, P. T. Chou, C. H. Shen, C. W.
Hsu and L. C. Chen, Org. Lett., 2006, 8(17), 3713; A. Petitjean, L. A.
Cuccia, M. Schmutz and J. M. Lehn, J. Org. Chem., 2008, 73, 2481; H.
F. J. Li, W. F. Fu, L. Li, X. Gan, W. H. Mu, W. Q. Chen, X. M. Duan
and H. B. Song, Org. Lett., 2010, 12, 2924.
Acknowledgements
18 C. He and S. J. Lippard, Tetrahedron, 2000, 56, 8245.
19 C. He and S. J. Lippard, J. Am. Chem. Soc., 2000, 122, 184; C. He, J. L.
DuBois, B. Hedman, K. O. Hodgson and S. J. Lippard, Angew. Chem.,
Int. Ed., 2001, 40, 1484.
This work was financially supported by the National Basic
Research Program of China (973 Program 2007CB613304) and the
foundation (GJHZ200817) for Bureau of International Coopera-
tion of Chinese Academy of Science. We thank the National Natu-
ral Science Foundation of China (NSFC Grant Nos. 20761006 and
21071123) and Program for Changjiang Scholars and Innovative
Research Team in University (IRT0979, Z2009-1-65003).
20 L. Xing, U. Ziener, T. C. Sutherland and L. A. Cuccia, Chem. Commun.,
2005, 5751.
21 J. Gajardo, J. C. Araya, S. A. Moya, A. J. Pardey, V. Guerchais, H. L.
Bozec and P. Aguirre, Appl. Organomet. Chem., 2006, 20, 272.
22 S. A. Moya, J. Gajardo, J. C. Araya, J. J. Cornejo, V. Guerchais, H.
L. Bozec, J. C. Bayo´n, A. J. Pardey and P. Aguirre, Appl. Organomet.
Chem., 2008, 22, 471.
23 W. F. Fu, L. F. Jia, W. H. Mu, X. Gan, J. B. Zhang, P. H. Liu, Q. Y.
Cao, G. J. Zhang, L. Quan, X. J. Lv and Q. Q. Xu, Inorg. Chem., 2010,
49, 4524.
Notes and references
1 J. P. Wilbaut, A. P. de Jonge, H. G. P. van der Voort and H. L. Otto,
Recl. Trav. Chim. Pays-Bas, 1951, 70, 1054; D. L. White and J. W. Faller,
Inorg. Chem., 1982, 21, 3119; A. J. Canty and N. J. Minchin, Aust. J.
Chem., 1986, 39, 1063; F. R. Keene, M. R. Snow, P. J. Stephenson and
E. R. T. Tiekink, Inorg. Chem., 1988, 27, 2040.
24 E. V. Brown, J. Org. Chem., 1965, 30, 1607.
25 G. R. Newkome, S. J. Garbis, V. K. Majestic, F. R. Fronczek and G.
Chiari, J. Org. Chem., 1981, 46, 833.
26 G. Kubas, Inorg. Synth., 1979, 19, 90.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 7365–7374 | 7373
©