M. Jean, P. van de Weghe / Tetrahedron Letters 52 (2011) 3509–3513
3513
X
[Au]
X
Me
limiting step
X
X
X
(isotopic effect)
[Au]
A
B
C
Me
[Au]
X
[Au]
+
H
X = CH2, O, N-Tf
E
[Au]
X
H
D
[Au]
Scheme 7. Proposed catalytic cycle.
a nucleophilic attack of the aromatic ring. Rearomatization of D
would lead to the organoaurated intermediate E. The last step
of the catalytic cycle, the protic cleavage of the carbon-gold bond,
would be rate limiting and give the hydroarylation product and
[Au]+. In the light of our observations, the carbocation B appears
to be a plausible intermediate species, justifying the regioselectiv-
ity of the hydroarylation and the olefin migration observed during
the reaction.
In conclusion we have described a gold-catalyzed intramolec-
ular hydroarylation. A variety of functionalized arene derivatives
was converted into the desired dihydrobenzopyrans, tetralins,
and tetrahydroquinolines in good yields. Additionally, prelimin-
ary mechanistic investigations including hydrogen/deuterium
isotopic effects were undertaken. We showed that the mecha-
nism involves an electrophilic aromatic substitution and the lim-
iting step is the protodeauration process. A better understanding
of this mechanism will help the development of an asymmetric
version of this intramolecular hydroarylation reaction and also
the study of a carbodeauration step instead of the simplest
protodeauration.
References and notes
1. Selected recent reviews, see: (a) Shapiro, N. D.; Toste, F. D. Synlett 2010, 675–
691; (b) Yamamoto, Y.; Gridnev, I. D.; Patil, N. T.; Jin, T. Chem. Commun. 2009,
5075–5087; (c) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239–3265; (d)
Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180–3211; (e) Jiménez-Núñez, E.;
Echavarren, A. M. Chem. Commun. 2007, 333–346; (f) Fürstner, A.; Davies, P. W.
Angew. Chem., Int. Ed. 2007, 46, 3410–3449.
2. (a) Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2007, 46, 4042–
4059; (b) Skouton, R.; Li, C.-J. Tetrahedron 2008, 64, 4917–4938; (c) Kitamura, T.
Eur. J. Org. Chem. 2009, 1111–1125; (d) de Mendoza, P.; Echavarren, A. M. Pure
Appl. Chem. 2010, 82, 801–820.
3. (a) Youn, S. W.; Pastine, S. J.; Sames, D. Org. Lett. 2004, 6, 581–584; (b) Xie, K.;
Wang, S.; Li, P.; Li, X.; Yang, Z.; An, X.; Guo, C.-C.; Tan, Z. Tetrahedron Lett. 2010,
51, 4466–4469; (c) Xiao, Y.-P.; Liu, X.-Y.; Che, C.-M. J. Organomet. Chem. 2009,
694, 494–501; (d) Niggeman, M.; Bisek, N. Chem. Eur. J. 2010, 16, 11246–11249;
(e) Reetz, M. T.; Sommer, K. Eur. J. Org. Chem. 2003, 3485–3496.
4. See the Supplementary data.
5. Wang, M.-Z.; Wong, M.-K.; Che, C.-M. Chem. Eur. J. 2008, 14, 8353–8364.
6. (a) Reich, N. W.; Yang, C.-G.; Shi, Z.; He, C. Synlett 2006, 1278–1280; During the
preparation of this manuscript, a gold-catalyzed rearrangement of substituted
allyl arylethers was reported: (b) Vyvyan, J. R.; Dimmitt, H. E.; Griffith, J. K.;
Steffens, L. D.; Swanson, R. A. Tetrahedron Lett. 2010, 51, 6666–6669.
7. Fuchita, Y.; Utsunomiya, Y.; Yasutake, M. J. Chem. Soc., Dalton Trans. 2001,
2330–2334.
8. In the case of a C-H activation mechanism, the kinetic isotopic effect kH/kD > 3.
As representative examples, see: (a) Garcia-Cuadrado, D.; De Mendoza, P.;
Graga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2007, 129, 6880–
6886; (b) Chernyak, N.; Gevorgyan, V. Adv. Synth. Catal. 2009, 351, 1101–1114.
9. The triflic acid was shown to catalyze the indole hydroarylation of various
olefins in good yields, see: Rozenman, M. M.; Kanan, M. W.; Liu, D. R. J. Am.
Chem. Soc. 2007, 129, 14933–14938.
Extension of the substrate scope and further developments are
in progress and will be reported in due course.
Acknowledgments
10. Under same conditions (loading, time, temperature), the catalytic system
AuCl3/AgOTf has always showed a slight more efficiency compared to TfOH
catalysis: for example, 1, 3k, 3p and 19 were converted to 2, 3ka/b and 4p in
68%, 82%, 98% and 93% using the gold/silver system compared to 65%, 79%, 90%
and 82% using TfOH.
This work was supported by the Université de Rennes 1, the
Région Bretagne and Rennes Metropole.
Supplementary data
11. Robb, W. Inorg. Chem. 1967, 6, 382–386.
12. Tunge, J. A.; Foresee, L. N. Organometallics 2005, 24, 6440–6444.
Supplementary data associated with this article can be found, in