C. Fischer et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4083–4087
4087
5. (a) Li, H.; Wolfe, M. S.; Selkoe, D. J. Cell Struct. 2009, 17, 326; (b) Osenkowski, P.;
Li, H.; Ye, W.; Li, D.; Aeschbach, L.; Fraering, P. C.; Wolfe, M. S.; Selkoe, D. J.; Li,
H. J. Mol. Biol. 2009, 385, 642.
6. See for example: (a) Selkoe, D. J.; Wolfe, M. S. Cell 2007, 131, 215; (b) Wolfe, M.
S. Curr. Top. Med. Chem. 2008, 8, 2; (c) Steiner, H.; Fluhrer, R.; Haass, C. J. Biol.
Chem. 2008, 283, 29627; (d) Wolfe, M. S. Semin. Cell Dev. Biol. 2009, 20, 219.
7. For selected reviews, see: (a) Wu, W.-L.; Zhang, L. Drug Dev. Res. 2009, 70, 94;
(b) Olson, R. E.; Albright, C. F. Curr. Top. Med. Chem. 2008, 8, 17; (c) Imbimbo, B.
P. Drug Discovery Today 2008, 5, 169; (d) Zettl, H.; Weggen, S.; Schneider, P.;
Schneider, G. Trends Pharmacol. Sci. 2010, 31, 402.
Table 3 (continued)
Compound
R
Ab42
IC50
Ab40
IC50
hERG
IC50
(lM)
(lM)
(l
M)
N
44
0.82
7.60
>10
4-Py
N
O
8. For a recent review on secretase biology and modes of c-secretase inhibition/
modulation, see: De Strooper, B.; Vassar, R.; Golde, T. Nat. Rev. Neurol. 2010, 6,
99.
S
45
46
0.27
0.41
0.77
1.13
2.15
>10
9. All GSMs lower Ab42 selectively over Ab40, however, some raise the levels of
Ab38 others Ab37. The consequence of this difference is unknown.
10. For selected reviews on GSMs, see: (a) Peretto, I.; La Porta, E. Curr. Top. Med.
Chem. 2008, 8, 38; (b) Breher, D. Curr. Top. Med. Chem. 2008, 8, 34; (c) Imbimbo,
B. P. Curr. Top. Med. Chem. 2008, 8, 54; (d) Tomita, T. Expert Rev. Neurother.
2009, 9, 661.
11. Flurizan is the COX-inactive (COX1&2) enantiomer of (S)-Flurbiprofen.
12. For a recent comprehensive review of the GSM chemical space, see: Oehlrich,
D.; Berthelot, D. J.-C.; Gijsen, H. J. M. J. Med. Chem. 2011, 54, 669.
13. (a) For patents in this area, see: (a) Hannam, J. C.; Hartmann, S.; M., Andrew; R.,
Mark P. WO2007110667.; (b) Madin, A.; Ridgill, M. P.; Kulagowski, J. J. WO
2007116228.; (c) Garcia, Y.; Hannam, J. C.; Harrison, T.; Hamblett, C. L.; Hubbs,
J. L.; Kulagowski, J. J.; Madin, A.; Ridgill, M. P.; Seward, E. WO 2007125364.; (d)
Stanton, M. G.; Munoz, B.; Sloman, D. L.; Hubbs, J. L.; Hamblett, C. L. WO
2008030391.; (e) Munoz, B.; Hubbs, J. L.; Hamblett, C. L.; Zhou, H.; Martinez, M.
WO 2008085301.
14. For a key patent, see: Kimura, T.; Kawano, K.; Doi, E.; Kitazawa, N.; Shin, K.;
Miyagawa, T.; Kaneko, T.; Ito, K.; Takaishi, M.; Sasaki, T.; Hagiwara, H. WO
2005115990.
15. (a) Blurton, P.; Fletcher, S.; Teall, M.; Harrison, T.; Munoz, B.; Rivkin, A.;
Hamblett, C.; Siliphaivanh, P.; Otte, K. WO 2008099210.; (b) Rivkin, A.; Ahearn,
S. P.; Chichetti, S. M.; Hamblett, C. L.; Garcia, Y.; Martinez, M.; Munoz, B. WO
2010019392.
16. (a) Rivkin, A.; Ahearn, S. P.; Chichetti, S. M.; Kim, Y. R.; Li, C.; Rosenau, A.;
Kattar, S. D.; Jung, J.; Shah, S.; Hughes, B. L.; Crispino, J. L.; Middleton, R. E.;
Szewczak, A. A.; Munoz, B.; Shearman, M. S. Bioorg. Med. Chem. Lett. 2010, 20,
1269; (b) Rivkin, A.; Ahearn, S. P.; Chichetti, S. M.; Hamblett, C. L.; Garcia, Y.;
Martinez, M.; Hubbs, J. L.; Reutershan, M. H.; Daniels, M. H.; Siliphaivanh, P.;
Otte, K. M.; Li, C.; Rosenau, A.; Surdi, L. M.; Jung, J.; Hughes, B. L.; Crispino, J. L.;
Nikov, G. N.; Middleton, R. E.; Moxham, C. M.; Szewczak, A. A.; Shah, S.; Moy, L.
Y.; Kenific, C. M.; Tanga, F.; Cruz, J. C.; Andrade, P.; Angagaw, M. H.; Shomer, N.
H.; Miller, T.; Munoz, B.; Shearman, M. S. Bioorg. Med. Chem. Lett. 2010, 20,
2279.
17. Fischer, C.; Shah, S.; Hughes, B. L.; Nikov, G. N.; Crispino, J. L.; Middleton, R. E.;
Szewczak, A. A.; Munoz, B.; Shearman, M. S. Bioorg. Med. Chem. Lett. 2011, 21,
773.
18. Fischer, C.; Munoz, B.; Zultanski, S.; Methot, J.; Zhou, H.; Brown, W. C.
WO2008156580.
S
N
47
0.20
2.06
>10
O
All compounds were tested at least twice in independent experiments (at least once
for hERG). For a description of the assay conditions. See Refs.21,24
Dose (iv; po) (mg/kg)
Clp (mL/min/kg)
Vdss (L/Kg)
t½ (iv) (h)
%F
1; 2
13.7
2.8
5.4
49
PK/PD assessment 6 hours after
an oral dose of 60 mg/kg (n=5)
[Plasma] = 40 μM; [Brain] = 9.4 μM
Aβ42 (brain): -42%
AUCN 0−24 po (μM h kg/mg)
2.6
Figure 4. SD rat PK and PK/PD assessment of triazole 47.
Gratifyingly, both strategies led to a significant attenuation of
hERG binding while maintaining good on-target potency and GS
modulation. In particular, compound 47 stood out as one of the
most potent compounds in this series, accompanied with reduced
binding to the hERG channel. Further evaluation of triazole 47 re-
vealed an acceptable overall profile without affecting the process-
ing of Notch (IC50 > 50 lM; >100-fold selective). The in vivo rat PK
profile of triazole 47 was sufficient for further profiling in rat PK/PD
studies and we were pleased to observe central Ab42 lowering 6 h
after a 60 mg/kg dose in SD rats (Fig. 4). However, brain exposure
and the brain to plasma ratio25 were significantly lower compared
to compound 39.
19. Careful work-up and purification was necessary to remove the unwanted
regioisomer. See Ref. 18 for detailed synthetic procedures.
20. Other analogues were prepared in a similar manner. For detailed synthetic
procedures, see Ref. 18.
21. IC50 measurements for Ab40 and Ab42 were determined using
electrochemiluminescent detection of peptides secreted by SH-SY5Y cells
stably overexpressing the b-APP C-terminal fragment SPA4CT. All compounds
were tested at least twice in independent experiments.
In summary, we have reported the discovery and SAR of tria-
zoles as modulators of
c-secretase. Starting from the initial lead
Consistent with the profile of
were constant; selected GSMs were confirmed in
c
-secretase modulators, total Ab peptide levels
SELDI experiment
a
benzyl triazole 23, we proceeded to optimize potency, brain pene-
tration and hERG binding. We found that the selectivity of Ab42
over Ab40 was generally moderate (5- to 20-fold), which is consis-
tent with other non-acid GSMs of this type.14 However, compounds
in this series behaved as GSMs26 and the selectivity over Notch
processing was generally very high (>100-fold), irrespective of
the Ab 42/40 ratio. During the course of this optimization program
we identified several potent and selective GSMs with in vivo PD
activity upon oral dosing. Future directions in this series and novel
strategies for non-acid GSM will be reported in due course.
confirming the appearance of shorter fragments while Ab42 formation was
suppressed. (a) Best, J. D.; Jay, M. T.; Otu, F.; Ma, J.; Nadin, A.; Ellis, S.; Lewis, H.
D.; Pattison, C.; Reilly, M.; Harrison, T.; Shearman, M. S.; Williamson, T. L.;
Atack, J. R. J. Pharmacol. Exp. Ther. 2005, 313, 902; (b) Clarke, E. E.; Shearman, M.
S. J. Neurosci. Methods 2000, 102, 61; (c) Dyrks, T.; Dyrks, E.; Monning, U.;
Urmoneit, B.; Turner, J.; Beyreuther, K. FEBS Lett. 1993, 335, 89.
22. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
23. Not all compounds were profiled in our Notch nuclear translocation assay.
Most compounds maintain a significant window over Notch. Key compounds
were profiled in the following assay: HeLa cells were made to co-express
nonfunctional halves of luciferase, one fused to Notch
-Secretase mediated cleavage of Notch E results in release of Notch
intracellular domain (NICD)/N-terminal luciferase, which translocates to the
nucleus and binds the RBP-J /C-terminal luciferase to form functional
DE and the other to RBP-
Jj.
c
D
j
a
References and notes
luciferase enzyme. This split-luciferase complementation system is used to
detect NICD levels by measuring total luminescence upon addition of luciferin
to lysed cells. Paulmurugan, R.; Gambhir, S. S. Anal. Chem. 2005, 77, 1295.
24. For a description of the hERG radioligand displacement assay, see: Butcher, J.
W.; Claremon, D. A.; Connolly, T. M.; Dean, D. C.; Karczewski, J.; Koblan, K. S.;
Kostura, M. J.; Liverton, N. J.; Melillo, D. G. WO 200205860.
1. Alzheimer’s Association: 2010 Alzheimer’s disease facts and figures http://
2. See for example: (a) Hung, L. W.; Ciccotosto, G. D.; Giannakis, E.; Tew, D. J.;
Perez, K.; Masters, C. L.; Cappai, R.; Wade, J. D.; Barnham, K. J. J. Neurosci. 2008,
28, 11950; (b) Moreno, H.; Yu, E.; Pigino, G.; Hernandez, A. I.; Kim, N.; Moreira,
J. E.; Sugimori, M.; Llinas, R. R. PNAS 2009, 106, 5901.
3. Thinakara, G.; Koo, E. H. J. Biol. Chem. 2008, 283, 29615.
4. C-99 is the C-terminal fragment of APP, which is formed from APP by BACE1
mediated proteolysis.
25.
A
modest PgP susceptibility (rat-mdr1a BA/AB = 7.2) might be partially
responsible for the lower brain exposure of compound 47.
26. The reduction of Ab42 in PK/PD experiments was generally greater than the
reduction of Ab40, consistent with in vitro findings.