3800
C. Wu et al. / Tetrahedron Letters 52 (2011) 3797–3801
observed that substituted phenylacetylenes worked best (entries
8–11), with either an electron-donating group (entry 8) or an elec-
tron-withdrawing group (entry 10) tolerated. Heterocyclic acety-
lenes reacted much more slowly and gave substantially lower
conversions to alkynylsydnones (entries 12 and 13). For example,
2-ethynylthiophene (2f) only gave a 38% yield of the desired prod-
uct, with 37% of 1a recovered (entry 12). 2-Ethynyl pyridine on the
other hand afforded a product apparently arising by a [3+2] cyclo-
addition, followed by elimination of CO2 (entry 13). Interestingly,
this process seemed to be promoted by the metal catalysts present
in the reaction mixture as no such cycloaddition was observed in
the absence of Pd, Cu, and Ag. Alkyl-substituted alkynes unfortu-
nately did not work well. While methyl propiolate (2h) gave a
low conversion of the sydnone and only a 33% yield, no other such
alkynes worked, including heptyne, N-(3-butynyl)phthalimide, 1-
ethynylcyclohexanol, and homopropargyl alcohol. Thus, the scope
of the current reaction is limited to arylacetylenes. Literature prep-
arations by Kalinin and Turnbull are in agreement with this obser-
vation as they are also limited to acetylenes with sp2 bonded
carbon substitutents.15–17 It should be noted that Kalinin’s method
is capable of preparing the desired product of 1b and 2g in a low
yield, while our method could not.
slow addition of alkynes and the scope of the alkynes is still lim-
ited, it is much more operationally friendly than previous methods.
Acknowledgments
This project was financially supported by the National Natural
Science Foundation of China (No. 21002021 to F.S.), Key Project
of Chinese Ministry of Education (No. 210127 to F.S.), and the Uni-
ted States National Science Foundation. We thank Mr. Lei Liu, Pro-
fessor Shrong-Shi Lin, Dr. Jiang Zhou (all Peking University), Mr.
Yong Wang (Henan University), and Dr. Kamel Harrata (Iowa State
University) for their help in the spectroscopic analysis. W.X. and
Y.L. acknowledge summer undergraduate support from Henan
University.
References and notes
1. For excellent reviews of sydnones, see: (a) Browne, D. L.; Harrity, J. P. A.
Tetrahedron 2010, 66, 553; (b) Stewart, F. H. C. Chem. Rev. 1964, 64, 129; (c)
Baker, W.; Ollis, W. D. Q. Rev. (London) 1957, 11, 15.
2. (a) Padwa, A. 1, 3-Dipolar Cycloaddition Chemistry; John Wiley & Sons: New
York, 1984; (b) Padwa, A.; Pearson, W. H. Synthetic Applications of 1, 3-Dipolar
Cycloaddition Chemistry toward Heterocycles and Natural Products; Wiley: New
York, Chichester, 2002.
The putative mechanism of this reaction is straightforward
(Scheme 2). Starting with Pd(II), transmetallation with a presumed
copper or silver acetylide generates an alkynyl Pd species (I). Co-
ordination of the sydnone (1) to the Pd center generates a cationic
species (II). Subsequent loss of the acidic proton at C4 results in the
formation of a 4-palladiosydnone (III), which reductively elimi-
nates the desired product 3 and affords Pd(0). The Cu and Ag salts
regenerate Pd(II) from Pd(0) to complete the cycle. Although this
mechanism explains the product formation, it should be consid-
ered as a simplified version, since the precise involvement of
air22,23 and the regeneration of Pd(II) from Pd(0) remain elusive.
In conclusion, we have developed a straightforward synthesis of
4-alkynylsydnones from terminal alkynes under Pd-catalyzed oxi-
dative coupling conditions. Although this reaction still requires the
3. Earl, J. C.; Mackney, A. W. J. Chem. Soc. 1935, 899.
4. (a) Brooks, P.; Walker, J. J. Chem. Soc. 1959, 4409; (b) Moustafa, M. A.; Gineinah,
M. M.; Nasr, M. N.; Bayoumi, W. A. H. Arch. Pharmacol. 2004, 337, 427.
5. (a) Kier, L. B.; Roche, E. B. J. Pharm. Sci. 1967, 56, 149; (b) Grynberg, N.; Gomes,
R.; Shinzato, T.; Echevarria, A.; Miller, J. Anticancer Res. 1992, 12, 1025; (c)
Dunkley, C. S.; Thoman, C. J. Bioorg. Med. Chem. Lett. 2003, 13, 2899.
6. (a) Pala, G.; Mantegani, A.; Coppi, G.; Genova, R. Chim. Ther. 1969, 4, 31; (b)
Wagner, H.; Hill, J. B. J. Med. Chem. 1974, 17, 1337; (c) Hill, J. B.; Ray, R. E.;
Wagner, H.; Aspinall, R. L. J. Med. Chem. 1975, 18, 50.
7. McCaustland, D. J.; Burton, W. H.; Cheng, C. C. J. Heterocycl. Chem. 1971, 8, 89.
8. (a) Dumitrasßcu, F.; Mitan, C. I.; Dumitrescu, D.; Drâghici, M. T.; Caproiu, M. T.
ARKIVOC 2002, 2, 80; (b) Dumitrasßcu, F.; Drâghici, M. T.; Dumitrescu, D.; Tarko,
L.; Râileanu, D. Liebigs Ann. 1997, 2613; (c) Turnbull, K.; Ito, S. Synth. Commun.
1996, 26, 1441; (d) Kato, H.; Ohta, M. Bull. Chem. Soc. Jpn. 1962, 35, 1418.
9. (a) Turnbull, K.; George, J. C. Synth. Commun. 1996, 26, 2757; (b) Tien, H.-J.; Yeh,
J.-C.; Wu, S.-J. J. Chin. Chem. Soc. 1992, 39, 443; (c) Turnbull, K.; Gross, K. C.; Hall,
T. A. Synth. Commun. 1998, 28, 931; (d) Azarifar, D.; Bosra, H. G.; Tajbaksh, M. J.
Heterocycl. Chem. 2007, 44, 467.
10. (a) Browne, D. L.; Helm, M. D.; Plant, A.; Harrity, J. P. A. Angew. Chem., Int. Ed.
2007, 46, 8656; (b) Rai, N. S.; Kalluraya, B.; Lingappa, B.; Shenoy, S.; Puranic, V.
G. Eur. J. Med. Chem. 2008, 43, 1715; (c) Foster, R. S.; Huang, J.; Vivat, J. F.;
Browne, D. L.; Harrity, J. P. A. Org. Biomol. Chem. 2009, 7, 4052; (d) Harju, K.;
Vesterinen, J.; Yli-Kauhaluoma, J. Org. Lett. 2009, 11, 2219; (e) Browne, D. L.;
Taylor, J. B.; Plant, A.; Harrity, J. P. A. J. Org. Chem. 2010, 75, 984; (f) Browne, D.
L.; Vivat, J. F.; Plant, A.; Gomez-Bengoa, E.; Harrity, J. P. A. J. Am. Chem. Soc.
2009, 131, 7762; (g) Browne, D. L.; Taylor, J. B.; Plant, A.; Harrity, J. P. A. J. Org.
Chem. 2009, 74, 396.
11. (a) Baker, W.; Ollis, W. D.; Poole, V. D. J. Chem. Soc. 1950, 1542; (b) Thoman, C.
J.; Voaden, D. J. Org. Synth. 1965, 45, 96.
12. (a) Applegate, J.; Turnbull, K. Synthesis 1988, 1011; (b) Azarifar, D.; Borsa, H. G.
Synthesis 2006, 1123; (c) Azarifar, D.; Borsa, H. G.; Tajbaksh, M.; Habibzadeh, S.
Heterocycles 2007, 71, 1815.
13. Wu, C.; Fang, Y.; Larock, R. C.; Shi, F. Org. Lett. 2010, 12, 2234.
14. (a) Rodriguez, A.; Moran, W. J. Synthesis 2009, 650; (b) Rodriguez, A.;
Fennessey, R. V.; Moran, W. J. Tetrahedron Lett. 2009, 50, 3942.
15. Cherepanov, I. A.; Bronova, D. D.; Balantseva, E. Y.; Kalinin, V. N. Mendeleev
Commun. 1997, 7, 93.
16. Kalinin, V. N.; Min, S. F. J. Organomet. Chem. 1988, 352, C34.
17. Turnbull, K.; Krein, D. M.; Tullis, S. A. Synth. Commun. 2003, 33, 2209.
18. For selected recent accounts and reports, see: (a) Sun, C.-L.; Li, B.-J.; Shi, Z.-J.
Chem. Commun. 2010, 46, 677; (b) Ge, H.; Niphakis, M. J.; Georg, G. I. J. Am.
Chem. Soc. 2008, 130, 3708; (c) Peng, C.; Wang, Y.; Wang, J. J. Am. Chem. Soc.
2008, 130, 1556; (d) McDonald, R. I.; Stahl, S. S. Angew. Chem., Int. Ed. 2010, 49,
5529; (e) Rogers, M. M.; Kotov, V.; Chatwichien, J.; Stahl, S. S. Org. Lett. 2007, 9,
4331; (f) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147; (g) Kalyani, D.;
Satterfield, A. D.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 8419; (h) Delcamp,
J. H.; Brucks, A. P.; White, M. C. J. Am. Chem. Soc. 2008, 130, 11270; (i) Reed, S.
A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11701; (j) Chen, X.;
Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094; (k)
Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315; (l) Liégault,
B.; Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K. J. Org. Chem. 2008, 73, 5022;
(m) Yoo, K. S.; O’Neill, J.; Sakaguchi, S.; Giles, R.; Lee, J. H.; Jung, K. W. J. Org.
Chem. 2010, 75, 95; (n) Shi, Z.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed.
2009, 48, 7895; (o) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N.
Angew. Chem., Int. Ed. 2009, 48, 4572; (p) Shi, Z.; Cui, Y.; Jiao, N. Org. Lett. 2010,
12, 2908; (q) Liu, C.; Jin, L.; Lei, A. Synlett 2010, 2527; (r) Liu, C.; Zhang, H.; Shi,
W.; Lei, A. Chem. Rev. 2011, 111, 1780.
Scheme 2. Putative mechanism (simplified).