4076
C. Praveen et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4072–4077
Table 3
substituents. The antibacterial activity study revealed that four
compounds (3e, 3i, 3k, and 3m) showed maximum activity against
S. aureus and one compound (3k) showed maximum activity
against E. coli. Antifungal activity study revealed that two com-
pounds (3b and 3m) showed maximum activity against C. albicans.
However, the effect of compounds on the host cell and their mode
of action remain to be studied.
Antibacteriala and antifungalb activity of compounds 3a–m by cup plate methodc
Entry
Compounds
Zone of inhibitiond (mm)
S. aureus
E. coli
C. albicans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
3a
3b
3c
3d
3e
3f
3g
3h
3i
3j
3k
3l
12
10
12
10
15
12
10
14
15
11
15
10
15
17
NA
12
10
10
11
14
14
14
12
15
10
17
10
15
18
NA
11
15
14
10
14
10
13
12
10
12
13
12
15
NA
16
Acknowledgments
C.P. acknowledges CSIR, New Delhi, India, for the research
fellowship. A.A. thanks Ms. R. Sabitha, Lecturer, Department of
Pharmaceutical Chemistry, Arulmigu Kalasalingam College of
pharmacy, Krishnankoil, Tamil Nadu, India for her valuable
suggestions.
3m
Amikacine
Ketoconazolef
Supplementary data
NA: not applicable.
a
Muller-Hinton agar was employed as culture media.
Sabouraud Dextrose Agar was employed as culture media.
Test concentration of 20
Supplementary data associated with this article can be found, in
b
c
l
g/mL was used with methanol as solvent control.
d
Bold value indicates the maximum antimicrobial activity among the screened
compounds.
e
References and notes
Standard antibacterial drug.
f
Standard antifungal activity.
1. (a) Schmidt, D.; Loscher, W. Epilepsia 2005, 46, 858; (b) Thiry, A.; Dogne, J. M.;
Supuran, C. T.; Masereel, B. Curr. Top. Med. Chem. 2007, 7, 855; (c) Yogeeswari,
P.; Raghavendran, J. V.; Thirumurugan, R.; Saxena, A.; Sriram, D. Curr. Drug
Targets 2004, 5, 589; (d) Yogeeswari, P.; Sriram, D.; Raghavendran, J. V.;
Thirumurugan, R. Curr. Drug Metab. 2005, 6, 127; (e) Mudd, W. H.; Stevens, E. P.
Tetrahedron Lett. 2010, 51, 3229; (f) Alam, O.; Mullick, P.; Verma, S. P.; Gilani, S.
J.; Khan, S. A.; Siddiqui, N.; Ahsan, W. Eur. J. Med. Chem. 2010, 45, 2467.
2. (a) Joshi, K. C.; Pathak, V. N.; Jain, S. K. Pharmazie 1980, 35, 677; (b) Boltov, V. V.;
Drugovina, V. V.; Yakovleva, L. V.; Bereznyakova, A. I. Khim. Farm. Zh. 1982, 16,
58; (c) William, C.E. U.S. Patent 3558,653, 1971.; (d) Pajouhesh, H.; Parsons, R.;
Popp, F. D. J. Pharm. Sci. 1983, 72, 318.
molecule more active than their respective unsubstituted oxin-
doles (3h and 3c). The tris-propargyl pattern also led to the
significant improvement in potency (3l).
Considering the extensive applications of di(indolyl)indolin-
2-ones in medicinal chemistry and in continuation of our ongoing
project on bio-active heterocycles,6i an attempt has been made
to evaluate the antimicrobial properties of the synthesized
compounds.
The representative compounds 3a–m were tested for their anti-
bacterial activity16 against Gram(+)ve and Gram(À)ve bacterial
strains namely Staphylococcus aureus (MSSA 22) and Escherichia coli
(K 12), respectively, by employing cup-plate method15 at a concen-
tration of 20 lg/mL of methanol in Muller-Hinton agar media. The
standard antibacterial drug Amikacin was screened under similar
conditions. Twenty microliters of these solutions were added to
each well. One of the wells was used as control by adding 20 lL
of methanol. The zone of inhibition, if any, produced by diffusion
of the compounds from the cup into the surrounding medium,
was measured after incubation at 37 °C for 24 h (Table 3). Out of
thirteen compounds, 3e, 3i, 3k, and 3m showed maximum activity
(15 mm inhibition) against S. aureus. Compound 3k showed maxi-
mum activity (17 mm inhibition) against E. coli. The in vitro anti-
fungal activities17 of the synthesized compounds were evaluated
against Candida albicans (ATCC 10231) by cup plate method at a
3. Garrido, F.; Ibanez, J.; Gonalons, E.; Giraldez, A. Eur. J. Med. Chem. 2004, 47,
1882.
4. Natarajan, A.; Fan, Y.-H.; Chen, H.; Guo, Y.; Iyasere, J.; Harbinski, F.; Christ, W. J.;
Aktas, H.; Halperin, J. A. J. Med. Chem. 2004, 47, 1884.
5. (a) Kamal, A.; Srikanth, Y. V. V.; Khan, M. N. A.; Shaik, T. B.; Ashraf, Md. Bioorg.
Med. Chem. Lett. 2010, 20, 5229; (b) Rad-Moghadam, K.; Sharifi-Kiasaraie, M.;
Taheri-Amlashi, H. Tetrahedron 2010, 66, 2316; (c) Klumpp, D. A.; Yeung, K. Y.;
Prakash, G. K. S.; Olah, G. A. J. Org. Chem. 1998, 63, 4481; (d) Wang, S.; Ji, S.
Tetrahedron 2006, 62, 1527; (e) Yadav, J. S.; Reddy, B. V. S.; Gayathri, K. U.;
Meraj, S.; Prasad, A. R. Synthesis 2006, 4121; (f) Azizian, J.; Mohammadi, A. A.;
Karimi, N.; Mohammadizadeh, M. R.; Karimi, A. R. Catal. Commun. 2006, 7, 752;
(g) Paira, P.; Hazra, A.; Kumar, S.; Paira, R.; Sahu, K. B.; Naskar, S.; Saha, P.;
Mondal, S.; Maity, A.; Banerjee, S.; Mondal, N. B. Bioorg. Med. Chem. Lett. 2009,
19, 4786; (h) Bergman, J.; Eklund, N. Tetrahedron 1980, 36, 1445; (i) Azizian, J.;
Mohammadi, A. A.; Karimi, A. R.; Mohammadizadeh, M. R. J. Chem. Res., Synop.
2004, 6, 424.
6. (a) Praveen, C.; Sagayaraj, Y. W.; Perumal, P. T. Tetrahedron Lett. 2009, 50, 644;
(b) Praveen, C.; Kiruthiga, P.; Perumal, P. T. Synlett 2009, 1990; (c) Praveen, C.;
Karthikeyan, K.; Perumal, P. T. Tetrahedron 2009, 65, 9244; (d) Praveen, C.;
Jegatheesan, S.; Perumal, P. T. Synlett 2009, 2795; (e) Praveen, C.;
Kalyanasundaram, A.; Perumal, P. T. Synlett 2010, 777; (f) Praveen, C.; Kumar,
K. H.; Muralidharan, D.; Perumal, P. T. Tetrahedron 2008, 64, 2369; (g) Praveen,
C.; Parthasarathy, K.; Perumal, P. T. Synlett 2010, 1635; (h) Praveen, C.;
Iyyappan, C.; Perumal, P. T. Tetrahedron Lett. 2010, 51, 4767; (i) Praveen, C.;
Dheenkumar, P.; Muralidharan, D.; Perumal, P. T. Bioorg. Med. Chem. Lett. 2010,
20, 7292; (j) Praveen, C.; Perumal, P. T. Synlett 2011, 521.
7. (a) Li, Z.; Qin, J.; Yang, Z.; Ye, C. J. Appl. Polym. Sci. 2004, 94, 769; (b) Guida, W.
C.; Mathre, D. J. J. Org. Chem. 1980, 45, 3172; (c) Wenkert, E.; Angell, E. C.;
Ferreira, V. F.; Michelotti, E. L.; Piettre, S. R.; Sheu, J. H.; Swindell, C. S. J. Org.
Chem. 1986, 51, 2343.
8. (a) Haider, N.; Kabicher, T.; Käferböck, J.; Plenk, A. Molecules 2006, 11, 1900; (b)
Palacious, F.; Alonso, C.; Amezua, P.; Rubiales, G. J. Org. Chem. 2002, 67, 1941;
(c) Broggini, G.; Bruché, L.; Zecchi, G. J. Chem. Soc., Perkin Trans. 1 1990, 533; (d)
Damodiran, M.; Muralidharan, M.; Perumal, P. T. Bioorg. Med. Chem. Lett. 2009,
19, 3611.
concentration of 20 lg/mL of methanol in Sabouraud Dextrose
Agar Media. The standard antifungal drug Ketoconazole was
screened under similar conditions. The same procedure employed
for the evaluation of antibacterial activities was followed for anti-
fungal evaluation also. The screening data (Table 3) revealed that
compounds 3b and 3m showed maximum antifungal activity
(15 mm inhibition).
In summary, we have synthesized N-allyl and N-propargyl
di(indolyl)indolin-2-ones via Cu(OTf)2 catalyzed 3-indolylation of
isatin. From chemical perspective this method is simple, practical
to perform and no column chromatography required for purifica-
tion. All the synthesized compounds were screened for their anti-
convulsant and antimicrobial activity. Among the screened
compounds six compounds (3c, 3d, 3f, 3i, 3l, and 3m) exhibited
maximum anticonvulsant activity. The anticonvulsant potency of
these compounds could be attributed to the favorable structural
combination of the indole and oxindole frameworks and their
9. For examples of Cu(II)-catalyzed protocols, see: (a) Jones, S.; Smanmoo, C. Org.
Lett. 2005, 7, 3271; (b) Das, O.; Paria, S.; Paine, T. K. Tetrahedron Lett. 2008, 49,
5924; (c) Frain, D.; Kirby, F.; McArdle, P.; O’Leary, P. Tetrahedron Lett. 2010, 51,
4103; (d) Ito, K.; Eno, S.; Saito, B.; Katsuki, T. Tetrahedron Lett. 2005, 46, 3981;
(e) Minato, D.; Imai, M.; Kanda, Y.; Onomura, O.; Matsumura, Y. Tetrahedron
Lett. 2006, 47, 5485; (f) Nishihara, Y.; Okamoto, M.; Inoue, Y.; Miyazaki, M.;
Miyasaka, M.; Takagi, K. Tetrahedron Lett. 2005, 46, 8661.
10. We have previously reported Cu(OTf)2 catalyzed regioselective synthesis of
phthalans, see Ref. 5h.