Although our discovered credit card-based compounds are
not the most potent antagonists of GOAT, they are more
drug-like than the presently known peptide-based inhibitors.
Additionally, based on the ease of chemical synthesis (only
1 step), structure–activity relationship studies may readily be
employed to identify more potent GOAT antagonists based on
our scaffold. Future cellular-based assay studies and ghrelin-
GOAT-based phenotypic studies will be reported in due
course.
This work was supported by The Skaggs Institute for
Chemical Biology (K.D.J.) and by the NIH (postdoctoral
fellowship F32-DK083179 to A.L.G.). We are grateful to
Mr. Greg McElhaney for the synthesis of compounds 3.
Notes and references
1 D. Yach, D. Stuckler and K. D. Brownell, Nat. Med., 2006, 12,
62–67.
2 T. R. Castaneda, J. Tong, R. Datta, M. Culler and M. H. Tschop,
Front. Neuroendocrinol., 2010, 31, 44–60.
3 A. L. Garner and K. D. Janda, ChemBioChem, 2011, 12, 523–525.
4 Y. Sun, M. Asnicar, P. K. Saha, L. Chan and R. G. Smith, Cell
Metab., 2006, 3, 379–386.
5 Y. Sun, M. Asnicar and R. G. Smith, Neuroendocrinology, 2007,
86, 215–228.
6 M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo and
Kangawa, Nature, 1999, 402, 656–660.
7 J. Yang, M. S. Brown, G. Liang, N. V. Grishin and J. L. Goldstein,
Cell, 2008, 132, 387–396.
8 J. A. Gutierrez, P. J. Solenberg, D. R. Perkins, J. A. Willency,
M. D. Knierman, Z. Jin, D. R. Witcher, S. Luo, J. E. Onyia and
J. E. Hale, Proc. Natl. Acad. Sci. U. S. A., 2008, 105,
6320–6325.
9 H. Kirchner, J. A. Gutierrez, P. J. Solenberg, P. T. Pfluger,
T. A. Czyzyk, J. A. Willency, A. Schurmann, H.-G. Joost,
R. J. Jandacek, J. E. Hale, M. L. Heiman and M. H. Tschop,
Nat. Med., 2009, 15, 741–745.
10 T.-J. Zhao, G. Liang, R. L. Li, X. Xie, M. W. Sleeman,
A. J. Murphy, D. M. Valenzuela, G. D. Yancopoulos,
J. L. Goldstein and M. S. Brown, Proc. Natl. Acad. Sci. U. S. A.,
2010, 107, 7467–7472.
11 B. P. Barnett, Y. Hwang, M. S. Taylor, H. Kirchner, P. T. Pfluger,
V. Bernard, Y. Lin, E. M. Bowers, C. Mukherjee, W.-J. Song,
P. A. Longo, D. J. Leahy, M. A. Hussain, M. H. Tschop,
J. D. Boeke and P. A. Cole, Science, 2010, 330, 1689–1692.
12 J. Yang, T.-J. Zhao, J. L. Goldstein and M. S. Brown, Proc. Natl.
Acad. Sci. U. S. A., 2008, 105, 10750–10755.
13 A. L. Garner and K. D. Janda, Angew. Chem., Int. Ed., 2010, 49,
9630–9634.
14 D. Perrin, T. Martin, Y. Cambet, C. Fremaux and A. Scheer,
Assay Drug Dev. Technol., 2006, 4, 185–196.
15 S. Gul and P. Gribbon, Expert Opin. Drug Discovery, 2010, 5,
681–690.
16 Y. Xu, J. Shi, N. Yamamoto, J. A. Moss, P. K. Vogt and
K. D. Janda, Bioorg. Med. Chem., 2006, 14, 2660–2673.
17 A. L. Garner and K. D. Janda, Curr. Top. Med. Chem., 2011, 11,
258–280.
Fig. 3 (a) Synthesis of potential GOAT agonists or antagonists using
the Ugi multicomponent coupling reaction and (b) structures of lead
naphthalene-based compounds identified using cat-ELCCA.
these compounds were tested as racemates, one enantiomer
may be more potent than the other. Examination of stereo-
chemical impact is currently ongoing.
Based on the structures of compounds 3a and 3b, it is
plausible to suggest that these compounds block octynoyl-
CoA from binding to GOAT since each contains a long
alkyl chain similar to that found in octanoyl-CoA. In the cell,
acyl-CoA substrates are transported as covalent adducts with
acyl-CoA binding proteins. To transfer octanoyl-CoA to
ghrelin, GOAT must interact with octanoyl-CoA binding
protein, thus, establishing a potentially important protein–
protein interaction. Since our crude membrane-bound GOAT
extract does not contain octanoyl-CoA binding protein, it will
be interesting to examine this possible mechanism in cells.
However, it cannot be ruled out that compounds 3a and 3b
are simply blocking the octanoyl-CoA binding site of GOAT.
In summary, using our recently disclosed fluorescence-based
assay for GOAT activity, cat-ELCCA, we have discovered the
first non-peptidic, small molecule antagonists of GOAT,
a
promising anti-obesity and anti-diabetes drug target.
Importantly, the identification of such small molecule-based
compounds should aid in furthering our understanding of the
impact of GOAT modulation in the ghrelin-GOAT system.
18 Y. Xu, H. Lu, J. P. Kennedy, X. Yan, L. A. McAllister,
N. Yamamoto, J. A. Moss, G. E. Boldt, S. Jiang and
K. D. Janda, J. Comb. Chem., 2006, 8, 531–539.
c
7514 Chem. Commun., 2011, 47, 7512–7514
This journal is The Royal Society of Chemistry 2011