R. Zhao et al. / Tetrahedron Letters 52 (2011) 3805–3809
3809
2. (a) Denizli, A.; Piskin, E. J. Biochem. Biophys. Methods 2001, 49, 391–416; (b)
Ashutosh, P. N. D.; Mehrotra, J. K. Colourage 1979, 26; (c) Anderson, R.; Nickless,
G. Anal. 1967, 92, 207–238.
3. (a) Bernaerts, K. V.; Du Prez, F. E. Prog. Polym. Sci. 2006, 31, 671–722; (b) Athey,
R. D. J. Eur. Coat. 1998, 3, 146–149; (c)Encyclopedia of Polymer Science and
Engineering; Sheppard, C. S., Overberger, C. G., Menges, G., Eds., 1985; 2,.
4. (a) Sandborn, W. J.; Hanauer, S. B. Aliment. Pharmacol. Ther. 2003, 17, 29–42; (b)
Hoult, J. R. S. Drugs 1986, 32, 18–26.
5. (a) Patel, M.; Shah, T.; Amin, A. Crit. Rev. Ther. Drug Carrier Syst. 2007, 24, 147–
202; (b) Jain, A.; Gupta, Y.; Jain, S. J. Pharmacol. Sci. 2007, 10, 86; (c) Klotz, U.;
Schwab, M. Adv. Drug Deliv. Rev. 2005, 57, 267–279; (d) Mooter, G.; Maris, B.;
Samyn, C.; Augustijns, P.; Kinget, R. J. Pharmacol. Sci. 1997, 86, 1321–1327.
6. (a) Sahraoui, B.; Luc, J.; Meghea, A.; Czaplicki, R.; Fillaut, J. L.; Migalska-Zalas, A.
J. Opt. Pure Appl. Opt. 2009, 11; (b) Qiu, F.; Cao, Y.; Xu, H.; Jiang, Y.; Zhou, Y.; Liu,
J. Dyes Pigm. 2007, 75, 454–459; (c) Yesodha, S. K.; Pillai, C. K. S.; Tsutsumi, N.
Prog. Polym. Sci. 2004, 29, 45–74; (d) Ishow, E.; Bella che, C.; Bouteiller, L.;
Nakatani, K.; Delaire, J. J. Am. Chem. Soc. 2003, 125, 15744–15745; (e) Burland,
D.; Miller, R.; Walsh, C. Chem. Rev. 1994, 94, 31–75.
7. Kanis, D.; Ratner, M.; Marks, T. Chem. Rev. 1994, 94, 195–242.
8. (a) Bhardwaj, V. K.; Singh, N.; Hundal, M. S.; Hundal, G. Tetrahedron 2006, 62,
7878–7886; (b) DiCesare, N.; Lakowicz, J. Org. Lett. 2001, 3, 3891–3893.
9. (a) Ghosh, S.; Banthia, A.; Chen, Z. Tetrahedron 2005, 61, 2889–2896; (b) Dürr,
H.; Bouas-Laurent, H. Photochromism: Molecules and Systems; Elsevier, 2003; (c)
Harvey, A.; Abell, A. Tetrahedron 2000, 56, 9763–9771; (d) Kumar, G.; Neckers,
D. Chem. Rev. 1989, 89, 1915–1925.
ion of nitrosobenzene was observed (see Supplementary data).
Therefore, a possible mechanism for synthesis of both aromatic
azo compounds is suggested in Scheme 2. Nucleophilic attack of
amino group on the aniline (2) to nitro group on the nitroaromatic
(1) firstly formed intermediate I in the presence of base (KOH), and
cleavage of I under heating produced nitroso compound III in the
similar fashion reported before.17 The coupling of nitrosobenzene
and aniline then provided the target product (3) by nucleophilic at-
tack to form intermediate IV and dehydration.
In summary, we have developed a simple, general and efficient
KOH-promoted method for synthesis of both symmetric and asym-
metric aromatic azo compounds via direct couplings of readily
available nitroaromatics and substituted anilines, and the corre-
sponding target products were obtained in good to excellent yields.
The method is of tolerance toward functional groups in the sub-
strates. It avoids the use of environmentally unfriendly transition
metals and hazardous nitrous acid. Therefore, this convenient
and practical approach is anticipated to attract much attention.
10. (a) Fabian, W. M. F.; Antonov, L.; Nedeltcheva, D.; Kamounah, F. S.; Taylor, P. J. J.
Phys. Chem. A 2004, 108, 7603–7612; (b) Tripathy, S. K.; Li, L.; Kumar J. Pure
Appl. Chem. 1998, 70, 1267–1270; (c) Yutaka, T.; Mori, I.; Kurihara, M.;
Mizutani, J.; Kubo, K.; Furusho, S.; Matsumura, K.; Tamai, N.; Nishihara, H.
Inorg. Chem. 2001, 40, 4986–4995; (d) Pieraccini, S.; Gottarelli, G.; Labruto, R.;
Masiero, S.; Pandoli, O.; Spada, G. Chem. Eur. J. 2004, 10, 5632–5639; (e) Van der
Zee, F. R.; Cervantes, F. J. Biotechnol. Adv. 2009, 27, 256–277; (f) Hong, Y. G.; Gu,
J. D. Appl. Microbiol. Biotechnol. 2010, 88, 637–643.
Acknowledgments
We would like to thank the financial support which was pro-
vided by the Ministry of Science and Technology of China
(2009ZX09501-004), the National Natural Science Foundation of
China (Grant No. 20872077 and 90813013) and Shenzhen Sci. &
Tech. Bureau.
11. (a) Baer, E.; Tosoni, A. L. J. Am. Chem. Soc. 1956, 78, 2857–2858; (b) Firouzabadi,
H.; Mostafavipoor, Z. Bull. Chem. Soc. Jpn 1983, 56, 914–917.
12. Clark, J. Chemistry of Waste Minimization; Springer: Netherlands, 1995.
13. March, J. Advanced Organic Chemistry Reactions Mechanisms and Structures;
McGraw Hill: New York, 1993.
Supplementary data
14. (a) Zhang, C.; Jiao, N. Angew. Chem., Int. Ed. 2010, 49, 6174. Angew. Chem. 2010,
122, 6310-6313; (b) Moglie, Y.; Vitale, C.; Radivoy, G. Tetrahedron Lett. 2008, 49,
1828–1831; (c) Grirrane, A.; Corma, A.; Garcia, H. Science 2008, 322, 1661; (d)
Corma, A.; Concepción, P.; Serna, P. Angew. Chem., Int. Ed. 2007, 46, 7266–7269.
Angew. Chem. 2007, 119, 7404.
Supplementary data (experimental procedures and full spectro-
scopic data for all compounds) associated with this article can be
15. Dabbagh, H.; Teimouri, A.; Chermahini, A. Dyes Pigm. 2007, 73, 239–244.
16. Wang, M.; Funabiki, K.; Matsui, M. Dyes Pigm. 2003, 57, 77–86.
17. (a) Buncel, E. Acc. Chem. Res. 1975, 8, 132–139; (b) Ayyangar, N.; Naik, S.;
Srinivasan, K. Tetrahedron Lett. 1989, 30, 7253–7256.
References and notes
1. (a) Hunger, K.; Wiley, J. Industrial Dyes Chemistry Properties Applications; Wiley-
VCH: Weinheim, 2003; (b) Latif, A.; Noor, S.; Sharif, Q. M.; Najeebullah, M. J.
Chem. Soc. Pak. 2010, 32, 115–124.