3676
M. Freitag et al. / Bioorg. Med. Chem. 19 (2011) 3669–3677
were purified as described31 with minor modifications. Purity
and identity of the produced enzymes were verified using SDS
gel electrophoresis. The deacetylase activity of the sirtuins was
dependent on the sirtuin cofactor NAD+ and could be inhibited
with the endogenous sirtuin inhibitor nicotinamide.
~
from ethanol. Yield: 0.187 g (1.1 mmol), 35%, mp: 223–225 °C. IR:
m
(cmÀ1) = 3262; 3051; 1624. 1H NMR: (200 MHz, DMSO-d6) d
(ppm) = 12.99 (s, 1H, NH); 12.54 (s, 1H, NH); 7.43–7.47 (d, 1H,
J = 8.5 Hz, H arom.); 6.55–6.60 (d, 1H, J = 8.5 Hz, H arom.); 3.83
(s, 3H, CH3). 13C NMR: (50 MHz, DMSO-d6) d (ppm) = 167.60;
160.12; 143.62; 120.17; 119.65; 103.90; 53.49.
6.4. Fluorescent deacetylase assay
6.2.16. N-(2,4-Dinitrophenyl)-1,3-benzodioxol-5-amine (12e)
Compound 12e was obtained by heating a mixture of 1.709 g
(7 mmol) 2,4-dimethoxybenzylamine and 5 mmol 2,4-dinitrofluo-
robenzene, 10 mmol NaHCO3, 50 ml acetone, and 5 ml H2O to re-
flux for 1–2 h. The solvent is evaporated under reduced pressure.
The resulted solid is washed with H2O and recrystallized from eth-
anol. Yield: 1.37 g (4.1 mmol), 82%, yellow needles, mp: 107–
~
Rates of inhibition of recombinant human SIRT1, SIRT2, and
SIRT3 were determined using a homogeneous fluorescent deacetyl-
ase assay32 carried out in 96-well plates. The assay mixture con-
tained the fluorescent deacetylase substrate ZMAL (10.5
NAD+ (500
M), the inhibitors at various concentrations and DMSO
(5–10% v/v). Total assay volume was 60 L. The amount of enzyme
lM),
l
l
109 °C. IR:
m
(cmÀ1) = 3352; 3112; 1624. 1H NMR: (200 MHz,
preparation was dependent on the activity of the preparation that
was used and varied from batch to batch. To assure initial state
conditions we usually adjusted to 10–30% substrate conversion
without inhibitor. A mixture solely with DMSO was used as a con-
DMSO-d6) d (ppm) = 9.18 (t, 1H, J = 6.0 Hz, NH); 8.85 (d, 1H,
J = 2.7 Hz, H arom.) 8.22 (dd, 1H, J = 2.7/9.6 Hz, H arom.); 7.06–
7.18 (m, 2H, H arom.); 6.61 (d, 1H, J = 2.3 Hz, H arom.); 6.47 (dd,
1H, J = 2.3/8.3 Hz, H arom.); 4.59 (d, 2H, J = 6.0 Hz, CH2); 3.85 (s,
3H, CH3); 3.73 (s, 3H, CH3). 13C NMR: (126 MHz, DMSO-d6) d
(ppm) = 160.17; 157.78; 147.95; 134.83; 129.88; 129.79; 128.75;
123.49; 116.39; 115.31; 104.65; 98.50; 55.49; 55.14; 41.44. HRMS:
[m/z]: calcd [M]+: 333.0951; found: 333.0951.
trol. After incubation (4 h, 37 °C) a stop solution (60 lL) was added
containing trypsin (1 mg  mlÀ1, from bovine or porcine pancreas,
10,000–200,000 BAEE units  mgÀ1) and nicotinamide (8 mM) to
cleave off the fluorescent aminocoumarin. Fluorescence intensity
was measured with
a microplate reader (BMG Polarstar,
kex = 390 nm, kem = 460 nm). Comparison of the fluorescence inten-
sity of the DMSO control with a probe containing a potential inhib-
itor was used to determine the rate of inhibition. All inhibition
determinations were carried out at least in duplicates. IC50 values
were determined using GraphPad Prism software.
6.2.17. N1-(2,4-Dimethoxybenzyl)-4-nitro-benzene-1,2-diamine
(13e)
To a boiling solution of 0.833 g (2.5 mmol) 12e in 90 ml meth-
anol a solution of 2.1 g NaHCO3 and 6.1 g Na2SÁ9H2O in 25 ml
H2O is dropped over 1 h. Subsequently the mixture is allowed to
boil at reflux for 4 h. When the reaction is finished, the mixture
is poured in 300 ml cold H2O. The resulted crystals are washed
with H2O and recrystallized from ethanol. Yield: 1.37 g (2.1 mmol),
~
Acknowledgment
The authors acknowledge financial support by DFG Grants
Li765/4-2 and Ju295/8-1.
82% red crystals, mp: 160–162 °C. IR:
m
(cmÀ1) = 3390; 3328; 1644.
1H NMR: (200 MHz, DMSO-d6) d (ppm) = 7.44–7.49 (m, 1H, H
arom.); 7.42 (t, 1H, J = 2.5 Hz, NH); 7.06 (d, 1H, J = 8.5 Hz, H arom.);
6.59 (d, 1H, J = 2.2 Hz, H arom.); 6.47 (dd, 1H, J = 2.2/8.4 Hz, H
arom.); 6.25–6.37 (m, 2H, H arom.); 5.22 (s, 2H, NH2); 4.30 (d,
1H, J = 5.3 Hz, CH2); 3.82 (s, 3H, CH3); 3.74 (s, 3H, CH3). 13C NMR:
(126 MHz, DMSO-d6) d (ppm) = 159.85; 157.90; 142.38; 136.65;
134.53; 128.79; 117.87; 115.63; 107.28; 107.24; 104.50; 98.37;
55.42; 55.15; 40.98. Elemental Anal. Calcd for C15H17N3O4: C,
59.40; H, 5.65; N, 13.85. Found: C, 59.41; H, 5.72; N, 13.50.
Supplementary data
Supplementary data associated with this article can be found, in
include MOL files and InChiKeys of the most important compounds
described in this article.
References and notes
6.2.18. 2-Nitro-N-[4-(trifluoromethyl)-phenyl]-1,3-benzodi-
oxol-5-amine (15)
1. Bedalov, A.; Gatbonton, T.; Irvine, W. P.; Gottschling, D. E.; Simon, J. A. Proc.
Natl. Acad. Sci. U.S.A. 2001, 98, 15113.
2. Lin, S. J.; Defossez, P. A.; Guarente, L. Science 2000, 289, 2126.
3. Lawson, M.; Uciechowska, U.; Schemies, J.; Rumpf, T.; Jung, M.; Sippl, W.
Biochim. Biophys. Acta 2010, 1799, 726.
4. Sanders, B. D.; Jackson, B.; Brent, M.; Taylor, A. M.; Dang, W. W.; Berger, S. L.;
Schreiber, S. L.; Howitz, K.; Marmorstein, R. Bioorg. Med. Chem. 2009, 17, 7031.
5. Peck, B.; Chen, C. Y.; Ho, K. K.; Di Fruscia, P.; Myatt, S. S.; Coombes, R. C.;
Fuchter, M. J.; Hsiao, C. D.; Lam, E. W. F. Mol. Cancer Ther. 2010, 9, 844.
6. Pagans, S.; Pedal, A.; North, B. J.; Kaehlcke, K.; Marshall, B. L.; Dorr, A.; Hetzer-
Egger, C.; Henklein, P.; Frye, R.; McBurney, M. W.; Hruby, H.; Jung, M.; Verdin,
E.; Ott, M. PLoS Biol. 2005, 3, 210.
7. Guarente, L. Nature 2006, 444, 868.
8. Gao, J.; Wang, W. Y.; Mao, Y. W.; Gräff, J.; Guan, J. S.; Pan, L.; Mak, G.; Kim, D.;
Su, S. C.; Tsai, L. H. Nature 2010, 466, 1105.
9. Sinclair, D. A.; Lin, S. J.; Guarente, L. Science 2006, 312, 195.
10. Grozinger, C. M.; Schreiber, S. L. Chem. Biol. 2002, 9, 3.
11. Posakony, J.; Hirao, M.; Stevens, S.; Simon, J. A.; Bedalov, A. J. Med. Chem. 2004,
47, 2635.
A mixture of 1.646 g (12 mmol) 3,4-(methylenedioxy)aniline
and
10 mmol
1-fluoro-2-nitro-4-(trifluoromethyl)benzene,
20 mmol NaHCO3, 100 ml acetone, and 10 ml H2O is heated until
reflux for 1–2 h. The solvent is evaporated under reduced pressure.
The resulted solid is washed with H2O and recrystallized from eth-
anol. Yield: 1.625 g (0.67 mmol), 67%, red solid, mp: 172–175 °C.
~
IR:
m d
(cmÀ1) = 3350; 1583. 1H NMR: (500 MHz, DMSO-d6)
(ppm) = 10.07 (s, 1H, NH); 8.88 (d, 1H, J = 2.8 Hz, H arom.); 8.21
(dd, 1H, J = 2.8/9.6 Hz, H arom.); 6.85 (dd, 1H, J = 1.6/8.3 Hz, H
arom.); 7.00–7.10 (m, 2H, H arom.); 6.98 (d, 1H, J = 1.8 Hz, H
arom.); 6.85 (m, 1H, H arom.); 6.11 (s, 2H, CH2). 13C NMR:
(126 MHz, DMSO-d6) d (ppm) = 148.72; 148.01; 147.01; 136.53;
131.97; 131.40; 130.16; 123.79; 120.21; 117.54; 109.51; 108.36;
102.27. Elemental Anal. Calcd for C13H9N3O6: C, 51.49; H, 2.99;
N, 13.86. Found: C, 51.16; H, 3.23; N, 13.71.
12. Diels, O. Liebigs Ann. Chem. 1922, 429, 1.
13. Reich, S. H.; Fuhry, M. A. M.; Nguyen, D.; Pino, M. J.; Welsh, K. M.; Webber, S.;
Janson, C. A.; Jordan, S. R.; Matthews, D. A.; Smith, W. W.; Bartlett, C. A.; Booth,
C. L. J.; Herrmann, S. M.; Howland, E. F.; Morse, C. A.; Ward, R. W.; White, J. J.
Med. Chem. 1992, 35, 847.
6.3. Recombinant proteins
14. Ghosh, T. N. J. Indian Chem. Soc. 1933, 583.
15. Nakayama, T.; Taira, S.; Ikeda, M.; Ashizawa, H.; Oda, M.; Arakawa, K.; Fujii, S.
Chem. Pharm. Bull. 1993, 41, 117.
16. Bebenburg, W. V.; Steinmetz, G.; Thiele, K. Chem. Ztg. 1979, 103, 387.
17. Li, M.-L.; Cheng, J.; Cao, S.-T.; Liu, Z.-L. Yingyong Huaxue 2010, 27, 122.
Human Sirt1 was expressed in E. coli as an N-terminally GST-
tagged, human Sirt2 as an N-terminally His6-tagged and human
Sirt3 as an C-terminally His6-tagged fusion protein. The enzymes