functionalized benzene and pyridine rings.9ꢀ14 The [2 þ 2
þ 2] cyclotrimerization reaction tolerates a variety of
functional groups, which allows for its application in the
facile synthesis of multisubstituted carbo- and heteroaro-
matic ring systems in a single step.15ꢀ30 Based on our
previous successes in applying cyclotrimerization reactions
in the synthesis of important, naturally occurring structur-
al motifs,31ꢀ36 we are reporting a regioselective approach
to the formation of the pyridine domain of thiopeptide
antibiotics via a transition-metal-catalyzed [2 þ 2 þ 2]
cyclotrimerization reaction as the key step. Two different
retrosynthetic analyses of 2 are shown in Scheme 1. We
first envisioned that 2 could be assembled from the cyclo-
trimerization of the enantiopure alkynylnitrile 3 and the
thiazole alkyne 4 (route 1). Although this route is highly
convergent, this approach potentially entails several pit-
falls: (1) Alkynylnitriles are traditionally poor substrates in
cyclotrimerization reactions due to the possibility of sev-
eral undesired side reactions.17,37,38 (2) The cyclotrimeriza-
tionprecursor 3 can exist as two different amide isomers, of
which only the one shown can undergo the desired reac-
tion. (3) The cyclotrimerization reaction can yield mixtures
of regioisomers,17 a problem that could possibly be solved
through the installation of a temporary regiodirecting
group R2.
Scheme 1. Retrosynthetic Analysis of 2
However, the cyclotrimerization reaction of the alkynyl-
nitrile 3 (R1 = Ac, R2 = TMS) and the thiazole alkyne 4
did not proceedasexpected(datanot shown). Eventhough
a wide range of conditions were explored, a number of
catalysts were investigated at different temperatures, with
and without microwave irradiation, the product yields
were generally below 15%.
Based on our39 and others40ꢀ43 recent successes in
constructing highly substituted benzenes and pyridines
via a silyl-tethered [2 þ 2 þ 2] cyclotrimerization reaction,
we applied a similar approach to the synthesis of the
pyridine core 2 of cyclothiazomycin (1) (Scheme 1, route
2). The silyl tether transforms an otherwise intermolecular
cyclotrimerization reaction into an intramolecular one,
providing enhanced regio- and chemoselectivity. Here,
the application of a silyl tether enabled switching of the
synthetic approach from a notoriously difficult17,38 to
cyclotrimerize alkynylnitrile to a regular diyne cyclotri-
merization precursor. The linker can be easily and selec-
tively removed in a traceless fashion, delivering the desired
product.
(13) Heller, B.; Hapke, M. Chem. Soc. Rev. 2007, 36, 1085.
(14) Chopade, P. R.; Louie, J. Synth. Catal. 2006, 348, 2307.
(15) Senaiar, R. S.; Young, D. D.; Deiters, A. Chem. Commun. 2006,
12, 1313.
(16) Zou, Y.; Young, D. D.; Cruz-Montanez, A.; Deiters, A. Org.
Lett. 2008, 10, 4661.
(17) Varela, J. A.; Castedo, L.; Saa, C. J. Org. Chem. 1997, 62, 4189.
(18) Young, D. D.; Deiters, A. Angew. Chem., Int. Ed. 2007, 46, 5187.
(19) McCormick, M. M.; Duong, H. A.; Zuo, G.; Louie, J. J. Am.
Chem. Soc. 2005, 127, 5030.
(20) Welsch, T.; Tran, H.-A.; Witulski, B. Org. Lett. 2010, 12, 5644.
(21) Yamamoto, Y.; Ishii, J.-i.; Nishiyama, H.; Itoh, K. J. Am. Chem.
Soc. 2005, 127, 9625.
(22) Yamamoto, Y.; Kitahara, H.; Ogawa, R.; Kawaguchi, H.;
Tatsumi, K.; Itoh, K. J. Am. Chem. Soc. 2000, 122, 4310.
(23) Yamamoto, Y.; Takagishi, H.; Itoh, K. J. Am. Chem. Soc. 2002,
124, 6844.
(24) Yamamoto, Y.; Hattori, K.; Nishiyama, H. J. Am. Chem. Soc.
2006, 128, 8336.
(25) Agenet, N.; Gandon, V.; Vollhardt, K. P. C.; Malacria, M.;
Aubert, C. J. Am. Chem. Soc. 2007, 129, 8860.
(26) Eichberg, M. J.; Dorta, R. L.; Grotjahn, D. B.; Lamottke, K.;
Schmidt, M.; Vollhardt, K. P. C. J. Am. Chem. Soc. 2001, 123, 9324.
(27) Boese, R.; Harvey, D. F.; Malaska, M. J.; Vollhardt, K. P. C. J.
Am. Chem. Soc. 1994, 116, 11153.
~
(28) Bonaga, L. V. R.; Zhang, H.-C.; Moretto, A. F.; Ye, H.;
We envisioned that 2 could be obtained from the oxida-
tion of the alcohol 5, which in turn could be synthesized
through removal of the silyl group from 6. The pyridine
ring 6 could be assembled by a [2 þ 2 þ 2] cyclotrimeriza-
tion reaction of the enantiopure diyne 7 and the
Gauthier, D. A.; Li, J.; Leo, G. C.; Maryanoff, B. E. J. Am. Chem.
Soc. 2005, 127, 3473.
(29) Anderson, E. A.; Alexanian, E. J.; Sorensen, E. J. Angew. Chem.,
Int. Ed. 2004, 43, 1998.
(30) Yuan, C.; Chang, C.-T.; Axelrod, A.; Siegel, D. J. Am. Chem.
Soc. 2010, 132, 5924.
(31) Zou, Y.; Deiters, A A. J. Org. Chem. 2010, 75, 5355.
(32) McIver, A.; Young, D. D.; Deiters, A. Chem. Commun. 2008, 39,
4750.
(33) McIver, A. L.; Deiters, A. Org. Lett. 2010, 12, 1288.
(34) Senaiar, R. S.; Teske, J. A.; Young, D. D.; Deiters, A. J. Org.
Chem. 2007, 72, 7801.
(35) Teske, J. A.; Deiters, A. Org. Lett. 2008, 10, 2195.
(36) Teske, J. A.; Deiters, A. J. Org. Chem. 2008, 73, 342.
(37) Brien, D. J.; Naiman, A.; Vollhardt, K. P. C. J. Chem. Soc.,
Chem. Commun. 1982, 133.
(39) Dush, M. K.; McIver, A. L.; Parr, M. A.; Young, D. D.; Fisher,
J.; Newman, D. R.; Sannes, P. L.; Hauck, M. L.; Deiters, A.; Nascone-
Yoder, N. Chem. Biol. 2011, 18, 252.
(40) Levin, S.; Nani, R. R.; Reisman, S. E. Org. Lett. 2010, 12, 780.
(41) Chouraqui, G.; Petit, M.; Aubert, C.; Malacria, M. Org. Lett.
2004, 6, 1519.
(42) Gandon, V.; Aubert, C.; Malacria, M. Chem. Commun. 2006, 21,
2209.
ꢀ
(38) Varela, J. A.; Castedo, L.; Saa, C. J. Am. Chem. Soc. 1998, 120,
12147.
(43) Gray, B. L.; Wang, X.; Brown, W. C.; Kuai, L.; Schreiber, S. L.
Org. Lett. 2008, 10, 2621.
Org. Lett., Vol. 13, No. 16, 2011
4353