Crystal data for 2: C16H23CuO2, M = 310.88, monoclinic, P21/c,
a = 17.979(3), b = 5.7850(10), c = 15.146(3) A, b = 104.285(3)1, V =
1526.5(5) A3, Z = 4, T = 100(2) K, m(Mo-Ka) = 1.426 mmꢂ1, 10 313
reflection measured, 2688 unique, Rint = 0.0381, full-matrix least-
squares refinement on F2 converged at R1 = 0.0609 and wR2 = 0.1664
for 218 parameters and 2214 reflections with I 4 2s(I) (R1 = 0.0725,
wR2 = 0.1753 for all data) and a GOF of 1.062.
emission intensity is substantially greater in the case of the
linear ‘‘copper wire’’ compared to the zigzag polymorphic
form. Such a drastic difference in PL properties of 2 and 3
(including both the emission wavelength and intensity) shows
that relatively small variations in positions of Cu atoms held
together by the same bridging ligand may lead to significant
changes in photoluminescence. A substantial difference in PL
emission of two different polynuclear Cu4- and Cu6-core
complexes bridged by the same carboxylate has been reported
by us recently.13 However, this is the first instance when two
structurally close polymorphs, that differ only by a slightly
different arrangement of the same molecular fragments
forming a 1D polymeric chain, show very different PL
properties.
For 3: C16H23CuO2,
M = 310.88, orthorhombic, Pbcn,
a = 34.687(3), b = 10.2092(8), c = 8.5888(7) A, V = 3041.5(4)A3,
Z = 8, T = 100(2) K, m(Mo-Ka) = 1.432 mmꢂ1, 24 294 reflection
measured, 3638 unique, Rint = 0.0396, full-matrix least-squares
refinement on F2 converged at R1 = 0.0375 and wR2 = 0.0966 for
180 parameters and 3228 reflections with I 4 2s(I) (R1 = 0.0425,
wR2 = 0.1003 for all data) and a GOF of 1.086.
For 4: C44H54Cl4Cu2O4,
a = 8.4789(9), b = 11.4630(13), c = 22.026(2) A, b = 92.125(2),
V = 2139.3(4) A3, Z = 2, T = 100(2) K, m(Mo-Ka) = 1.285 mmꢂ1
M = 915.77, monoclinic, P21/c,
,
18 036 reflection measured, 4987 unique, Rint = 0.0371, full-matrix
least-squares refinement on F2 converged at R1 = 0.0341 and wR2 =
0.0879 for 250 parameters and 4341 reflections with I 4 2s(I)
(R1 = 0.0402, wR2 = 0.0919 for all data) and a GOF of 1.047.
In contrast to the extended wire-type structures of 2 and 3,
compounds 1 and 4 are based on dinuclear Cu2(O2C16H23)2
units. The solid sample of 1 brightly emits light with a
maximum wavelength of 535 nm, while crystals of 4 show
no measurable emission. The latter may be due to the heavy
atom effect of the coordinated Cl atoms.14 Noteworthily, 1
emits light in the same region as the only known benzoate9
having the same Cu(I) acetate structural type.
1 J. F. Berry, in Multiple Bonds Between Metal Atoms, ed.
F. A. Cotton, C. A. Murillo and R. A. Walton, Springer, 2005,
pp. 669–706, and references therein; T.-W. Tsai, Q.-R. Huang,
S.-M. Peng and B.-Y. Jin, J. Phys. Chem. C, 2010, 114, 3641;
V. P. Georgiev and J. E. McGrady, Inorg. Chem., 2010, 49, 5591.
2 F. A. Cotton, Chem. Soc. Rev., 1983, 12, 35; M. H. Chisholm and
A. M. Macintosh, Chem. Rev., 2005, 105, 2949; D. L. Phillips,
C.-M. Che, K. H. Leung, Z. Mao and M.-C. Tse, Coord. Chem.
Rev., 2005, 249, 1476; A. Grodzicki, I. Lakomska, P. Piszczek,
I. Szymanska and E. Szlyk, Coord. Chem. Rev., 2005, 249, 2232;
S. Liu, Y.-F. Han and G.-X. Jin, Chem. Soc. Rev., 2007, 36, 1543;
G. Schmid, Chem. Soc. Rev., 2008, 37, 1909; A. S. Filatov and
M. A. Petrukhina, Coord. Chem. Rev., 2010, 254, 2234.
This study has revealed structural variations that can be
found for carboxylate complexes having the same bridging
ligand and the same empirical formula. Changes of experi-
mental conditions allowed us to use isopropyl groups of 2,4,6-
triisopropylbenzoate as a controllable switch for intermolecular
copper–oxygen interactions and to isolate the previously
unknown copper(I) carboxylate wires. The use of gas-phase
crystallization for this system proved to be experimentally
convenient to turn Cuꢀ ꢀ ꢀO intermolecular interactions
off, while solution crystallization put them back on. The
consideration of photoluminescent properties for the structurally
diverse copper(I) 2,4,6-triisopropylbenzoate products revealed
that emission wavelengths and intensities depend not only on
the overall structural type (for example, infinite wires vs.
dimeric structures) but show great sensitivity to subtle
differences in spatial distribution of Cu(I) atoms, even for
the otherwise similar polymeric chains constructed from the
same molecular units (linear vs. zigzag wires).
3 P. Pyykko, Chem. Rev., 1997, 97, 597; P. Pyykko, Angew. Chem.,
¨
¨
Int. Ed., 2004, 43, 4412; A. L. Balch, Gold Bull., 2004, 37, 45;
D. B. Leznoff and J. Lefebvre, Gold Bull., 2005, 38, 47; S. Sculfort,
P. Croizat, A. Messaoudi, M. Benard, M.-M. Rohmer, R. Welter
and P. Braunstein, Angew. Chem., Int. Ed., 2009, 48, 9663.
4 J. Beck and J. Strahle, Angew. Chem., Int. Ed. Engl., 1985, 24, 409;
¨
G. J. Pyrka, M. El-Mekki and A. A. Pinkerton, J. Chem. Soc.,
Chem. Commun., 1991, 84.
5 R. Clerac, F. A. Cotton, L. M. Daniels, J. Gu, C. A. Murillo and
´
H.-C. Zhou, Inorg. Chem., 2000, 39, 4488; Z.-K. Chan, Y.-Y. Wu,
J.-D. Chen, C.-Y. Yeh, C.-C. Wang, Y.-F. Tsai and J.-C. Wang,
Dalton Trans., 2005, 985; Y. Takemura, T. Nakajima and
T. Tanase, Dalton Trans., 2009, 10231.
6 T. Sugiura, H. Yoshikawa and K. Awaga, Inorg. Chem., 2006, 45,
7584.
7 Y. Sevryugina and M. A. Petrukhina, Eur. J. Inorg. Chem., 2008,
219.
We thank the National Science Foundation (NSF
CAREER grant, CHE-0546945) for funding and the University
at Albany for supporting the X-ray center at the Department
of Chemistry.
8 F. A. Cotton, E. V. Dikarev and M. A Petrukhina, Inorg. Chem.,
2000, 39, 6072; Y. Sevryugina, O. Hietsoi and M. A. Petrukhina,
Chem. Commun., 2007, 3853.
9 Y. Sevryugina, D. D. Vaughn and M. A. Petrukhina, Inorg. Chim.
Acta, 2007, 360, 3103.
10 M. G. B. Drew, D. A. Edwards and R. Richards, J. Chem. Soc.,
Chem. Commun., 1973, 124.
11 R. Clerac, F. A. Cotton, K. R. Dunbar, E. A. Hillard,
´
Notes and references
z Synthesis of 1: a mixture of 0.10 g of copper(I) acetate (0.41 mmol),
0.50 g of 2,4,6-triisopropylbenzoic acid (2.02 mmol) (1 : 2.5) and 0.05 g
of metallic copper in 40 mL of m-xylene was refluxed for 43 h with a
Dean-Stark trap. The obtained light brown solution was filtered
through Celite and then concentrated to dryness affording a brown
solid. This solid was washed 4 times with hexanes (4 ꢁ 10 mL) until it
was completely off-white and dried under vacuum at 65 1C for 12 h to
provide 0.25 g (99%) of 1. Anal. Calc. for C16H23CuO2: C, 61.81; H,
7.46. Found: C, 61.72; H, 7.35%. PL (lex = 350 nm, lmax = 535 nm).
M. A. Petrukhina and W. B. Smucker, C. R. Acad. Sci., Ser. IIc:
Chim., 2001, 4, 315; F. A. Cotton, E. A. Hillard and C. A. Murillo,
J. Am. Chem. Soc., 2002, 124, 5658.
12 S. S. Batsanov, Inorg. Mater., 2001, 37, 871; S. Nag, K. Banerjee
and D. Datta, New J. Chem., 2007, 31, 832.
13 A. S. Filatov, O. Hietsoi, Y. Sevryugina, N. N. Gerasimchuk and
M. A. Petrukhina, Inorg. Chem., 2010, 49, 1626.
14 E. F. Healy, S. Manzer, J. Gorman, A. Jones and N. Cristea,
Chem. Phys. Lett., 2010, 485, 258.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6939–6941 6941